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Abstract—The problem under investigation is the effect of thermal modulation on the stability of a fluid

layer heated from below. An experiment was performed in which a layer of air was subjected to sinusoidal

heating about a nonzero mean. A numerical analysis of the linear stability equations indicated that the

linear assumption is invalid at the low frequencies of modulation studied experimentally. A nonlinear

analysis employing the shape assumption and free boundary conditions was developed and examined

numerically. It was found both experimentally and analytically that for low frequencies the modulation
is destabilizing, whereas at higher frequencies some stabilization is apparent.

NOMENCLATURE

a, wave number;

A, B,C, temperature amplitudes (4.24);
d, fluid layer depth;

g, gravitational acceleration;

k,m, n, integers;

Pr, Prandtl number;
R, Rayleigh number;
Re,  real part;

T, temperature;

t, time;

X, ¥, 2, space coordinates;

u, v, w, velocity components;
v, velocity vector;

v, probe velocity.

Greek symbols
v, kinematic viscosity;
g, amplitude of oscillation;
w, frequency of oscillation [nondimensional];
@,  frequency of oscillation [dimensional];
K, thermal diffusivity;
B, thermal gradient;

V2, Laplacian operator;

¢, angular position;

0, T-T,,

% departure from sine curve;

A, difference;

2, density;

Y1,72, Y3, nondimensional qualities (4.9);
V., horizontal derivative;

8¢, departure from mean temperature;
¥, nondimensional stream function;
#,,  convection component (4.19).
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Subscripts
¢, critical;
P, periodicity criterion;
0, initial conditions;
m, mean,
Superscripts
* dimensional quantity;
° amplitude;
-, horizontal average.

1. INFTRODUCTION

THIS paper concerns the stability of a layer of fluid
when heated from below in a periodic manner with
time. It is known that the stability of many physical
systems may be strongly influenced by temporal modu-
lation of an appropriate parameter. Closely allied
mathematically to the present case is the problem of
circular Couette flow, ie. the flow between two co-
axially rotating cylinders, when the inner cylinder has
a velocity which varies periodically with time. Previous
experimental results of Donnelly [1, 2] have indicated
that a viscous fluid is stabilized, in the sense that some
averaged disturbance amplitude can be less for the
modulated case, with the degree of stabilization rising
from zero at high frequency to a maximum at a
frequency of 0-274(v/d?), where d is the gap between
the cylinders and v is the kinematic viscosity. How-
ever, due to experimental limitations, behavior at very
low frequencies was not clearly established, although
this is precisely the regime for which the instantaneous
response might be of greatest importance, as will be
discussed later. Thompson [ 3] has presented numerical
and experimental evidence that oscillating the inner
cylinder about a zero mean results in maximum
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stabilization at high frequency, decreasing monoton-
ically as frequency goes to zero. No experimental
results other than those presented here exist, to the
authors’ knowledge, for the case of thermally modu-
lated convection, although Bénard type problems with
various types of thermal modulation have received
considerable analytical attention. For the present case
of modulation at the lower surface, Venezian [4] found
that the modulation would be stabilizing, with maxi-
mum stabilization occurring as the frequency goes to
zero. The analytical approach was a linear perturbation
analysis with quantities expanded in powers of ampli-
tude of oscillation ¢, assumed to be small. Rosenblat
and Herbert [5] investigated the linear stability by
expanding in powers of the nondimensional frequency
of oscillation w, at arbitrary amplitude. (& = Qd?/x,
where Q is the dimensional frequency, d is the depth
of the fluid layer, and x is the thermometric con-
ductivity.) The free-free boundary conditions were used
in both of these analyses. Rosenblat and Tanaka [6]
used a Galerkin procedure to solve the linear problem
when the lower wall temperature is being modulated
at finite amplitude and frequency and employed the
more realistic rigid wall boundary conditions.

A basic feature shared in part by [4-6] is the
utilization of a certain condition, based on Floquet
theory, to delineate the stability boundaries, namely,
the periodicity condition: if an infinitesimal disturbance
achieves net growth over one cycle of oscillation, the
state is unstable. Given enough cycles, the disturbance
will grow to finite size. The periodicity criterion is a
sufficient condition for instability, but from an obser-
vational and practical viewpoint, it must be considered
more carefully. Even if an infinitesimal disturbance has
no net growth over a cycle, it is possible that it has
grown to finite size during the unstable part of the
cycle and then decayed. Hence the heat transfer, for
instance, will be significantly different from that pre-
dicted by the conductive solution during parts of the
cycle.

Similar remarks may be made even if the full non-
linear equations are used. An initially small but finite
disturbance may exhibit net decay over a cycle yet
still produce observable motion and an increase in heat
transport during some part of the cycle. In a real
experiment it is irrelevant if a particular disturbance
decays over many cycles, because naturally occurring
background noise will give rise to new disturbances and
observed motion continuously.

Some results of the investigations reported in [9-11]
are presented in Figs. 1 and 2, where the periodicity
condition is used to solve for an upper bound of stable
states. In these figures w is the nondimensional fre-
quency, ¢ the nondimensional amplitude of modulation,
a is the wave number, and Pr the Prandtl number. On
the vertical axis, R, is the critical Rayleigh number of
the unmodulated problem according to linear theory,
while R, is the critical Rayleigh number in the modu-
lated case as determined by the periodicity criterion.
These figures indicate that R, > R, and that maximum
stabilization occurs as w — 0, rather than at some
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FiG. 1. Variation of critical Rayleigh number with frequency
according to the periodicity condition, with Pr =1, ¢ = 1,
a=31[4].
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F1G. 2. Variation of critical Rayleigh number with ampli-
tude of modulation, withw =1, Pr=1,a = 31 [5].

finite frequency as observed in the Couette flow analog
by Donnelly [1]. In view of the doubtful validity of
the periodicity criterion when used in conjunction with
linear theory and low frequency of modulation,
Rosenblat and Herbert [ 5] propose the amplitude con-
dition, which describes as unstable any disturbance
which increases during the cycle by an arbitrary factor
of ten. The upper bound in Rayleigh number deter-
mined by this criterion is presented in Fig. 3. For
comparison, the periodicity condition results for the
same boundary conditions are included on Fig. 3 to
show the two criteria intersecting at w =~ 3 when
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FiG. 3. Comparison between critical Rayleigh
number as given by the periodicity and amplitude
conditions, with ¢ = 05, Pr = 1, a = 31 [5].
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& = 0-5. Thus the amplitude condition serves the double
purpose of describing the qualitative behavior at low
frequency and indicating the minimum frequency for
which linearization is valid.

The object of the present experiment is to investigate
the effects of frequency and amplitude of oscillation on
the critical Rayleigh number of the fluid layer. Rather
than choosing a criterion for the onset of instability,
the experimental results are first presented from an
observational point of view. The same spirit is used in
the analytical investigation—the behavior of the fluid
under a given set of boundary conditions is followed
numerically as a function of time. In this way, an
attempt is made to describe curves in the &~ plane
which define the stability in a realistic manner.

2. THE BASIC STATE OF UNSTEADY CONDUCTION

A fluid layer is confined between two horizontal walls
separated by a distance d and of infinite horizontal
extent. The upper wall has zero temperature, and at
the lower wall

T* = Bd(1+ecos Qu*). 2.1)

T* is temperature, f§ the thermal gradient, e the ampli-
tude, Q the frequency of modulation, and t* is time.
The asterisk denotes a dimensional quantity. In the
basic state, before the onset of convection, the thermal
profile of the layer is governed by the diffusion equa-
tion. With scaling d for length, d?/x for time, and fd
for temperature, the equations and boundary condi-
tions may be written in nondimensional form:

Ty

i
TI,=0
Ty = 1+ecoswt

VT, (2.3)

z=1
2.4
L2 0 (24)

where
w = Qd?/x.
The solution for Ty is
sinh((1 — 2)(1 + i) (w/2)!/*)ee™"
sinh{(1+i)(w/2)'/?) } 23)

where Re denotes the real part, or

T0= 1—Z+Re{

Ty = Aecos(wt+ )+ (1 —z)

where A(z) is the amplitude and ¢(z) is the phase angle.
Figure 4 pictures the temperature at wt = 0. Included
on this figure are same experimental measurements of
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F1G. 4. Static temperature as a function of
vertical position, withe =1,t = 0.
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F1G. 5. Phase lag ¢ as a function of vertical
position, ¢ = 1.

peak temperature at w = 1-2, at mean Rayleigh number
R, = —2100. On Fig. 5 is plotted the phase lag ¢ as
a function of z and w =1, 2, and 10. Included are
measurements of phase lag taken at the midpoint of
the layer, z = 0-5. Correct quantitative agreement is
evident.

The solution for the time dependent temperature
profile is presented in detail in the preceding figures
to illustrate an important feature of the physical
problem at @ = O(l) or less. At this frequency the
temperature gradient is linear, with the numerical re-
sults indicating a maximum departure from linearity
of the order of one part in 103. This conclusion is
supported completely by the experimental results, when
only small, random variation from a best fit straight
line were measured at @ = O(1). The fact that at low
frequency the temperature profile is linear suggests a
quasi-steady approach to investigating the limit & — 0.
One argues that if

Ruean(1+4¢) > R, (2.6)
convection will occur during part of the cycle for a
sufficiently low frequency. Ryean is the mean Rayleigh
number for modulated lower wall, while R, is the critical
Rayleigh number for the unmodulated problem. The
logical justification for the inequality (2.6) is that the
left-hand side represents the maximum Rayleigh num-
ber attained during the cycle of modulation, which, if
the inequality holds, produces an unstable linear
gradient in the fluid. It will always be possible to choose
an o low enough that the unstable gradient is main-
tained long enough for convection to appear. Thus for
any ¢ the critical mean Rayleigh number is seen to be,
in the limit w — 0,
R,

Rmz__

e Q2.7

A low frequency modulation will be destabilizing; for
¢ = 1 this destabilization amounts to 50 per cent. This
conclusion is supported by the experimental investi-
gation, which typically shows measurable convection
occurring at the peak of the cycle and disappearing as
the lower wall temperature decreases. This intuitive
criterion for stability has recently been confirmed
rigorously by Homsy [ 7], who used the energy method
to investigate analytically the stability of the case
studied here.



74 R. G. Finucanr and R, E. KELLY

3. EXPERIMENTAL INVESTIGATION

3.1. Experimental apparatus

The experimental arrangement is composed of the
convection chamber containing air and associated
instrumentation, the mechanical drive which produces
asinusoidal heat flux, the cooling baths for maintaining
upper and lower surface temperatures, and the various
recording and measuring devices which provide in-
strument readout.

The convection chamber itself is depicted sche-
matically in Fig. 6. The chamber is bounded in the
horizontal directions by a 20-0¢ square of adjustable
height. Since the maximum height used is 2:5c, the
minimum aspect ratio is 8:1. Davis [8] has shown that
for an aspect ratio larger than 6:1, the critical Rayleigh
number should be similar to that of an infinite layer.
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Fi1G. 6. Schematic diagram of convection chamber.

The upper wall, which i1s kept at constant tem-
perature, is formed by a glass plate, itself the lower
plate of the upper cooling bath. The lower surface of
the chamber is a machined aluminum plate, whose
temperature is controlled by two independent systems.
The first of these is a 0-005-india stainless steel wire,
strung at intervals of 0-5in and electrically heated in
a manner which produces the sinusoidal component
of the lower surface temperature. Separating the bare
heating wires from the aluminum plate is a 0-015in
sheet of mica which provides electrical and thermal
insulation to insure an even distribution in the spanwise
temperature of the plate. Below the wires is the lower
cooling channel, whose purpose is to maintain the
steady component of the lower surface temperature.
Four 0-375-in thick plexiglass members, machined to
various heights, placed on edge and glued at the corners,
form the sides of the chamber.

The upper wall of the air layer is kept at a constant
temperature by a Precision Scientific Company Cat.
66600 bath pumping at 1-5 gal/min. This bath is capable
of maintaining its water temperature to +002°C. At
this flow rate, the increase in water temperature due
to the heat transferred through the layer of air at a
Rayleigh number three times critical (R = 5000} is
computed to be less than 0-001°C.

The steady component of the lower wall temperature
is maintained by a Neslab Instruments No. 690606
bath with a pumping capacity of 3gal/min. The maxi-
murm spanwise temperature variation in the lower water
bath due to the heat lost from the heating wires is
about 0-01°C under the worst case of assuming that
all the energy is lost to the coolant. No spanwise
nonuniformities are observed which are ascribed to
this source.

The water from the two cooling baths is pumped

through two channels of similar design. The channels
are constructed of two 0-125-in thick pieces of plate
glass about 15-in square separated by spacers along
two edges to form a laminar sheet flow channel 0-125-in
high. The assembly is glued together, with a plenum
chamber at each end completing the structure.

The oscillating component of the lower wall tem-
perature is produced by the device sketched in Fig. 7.
The heating wires are connected to a 0150V AC variac
whose control knob is cam driven so that its angular
position ¢ is given by ¢ ~ + |sint|'?, where ¢ is time,
and the minus sign applies when sin t < 0.
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F1G. 7. Mechanism for producing oscillating component of
lower wall temperature.

The instrumentation consists of two copper—constan-
tan thermocouples which measure temperature differ-
ences between the upper and lower surface and a probe
mounted thermistor to determine the local temperature
at any point in the convection chamber.

The temperature probe is mounted in an overhead
carriage mechanism and driven by a jack screw device
to permit linear traversing speeds horizontally through
the chamber ranging from I mm to 10cm/min. The
jack screw is driven through reduction gearing by a
fractional horsepower Bodine synchronous motor.

A moving probe was found to give a much more
reliable and repeatable indication of the onset of con-
vection than a stationary one. With no convection
present, the stationary and moving probes produce
identical sine curves. As convection begins, a stationary
probe reveals only a gradual distortion of the curve,
whereas a moving probe imposes an additional sine
wave of different period whose presence is readily
detectable. Care is required to insure that the probe
velocity selected is not coincidently equal or nearly
equal to the product of modulation frequency and
convection roll wavelength; such a probe is effectively
stationary.

The thermistor probe itself consists of a 16in long
hollow, stainless steel tube with 0-031 in O.D. Soldered
to the tip of the probe was a 0-00l-india platinum-
iridium lead wire of a Fenwall thermistor bead 0-014-in
thick. The other thermistor lead wire was soldered to
a single strand copper wire insulated with lacquer and
inserted in the center of the hollow tube. This arrange-
ment provides a rigid probe of small size and smooth
exterior to minimize the disturbance of the working
fluid.
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The Fenwall bare bead thermistor used has a time
constant in still air of 1-7s. The nominal resistance at
25°C is 15 x 10°Q, with a coefficient of resistance
change with temperature of —0-044/°C.

A standard thermistor bridge is designed and cali-
brated against a precision mercury in glass ther-
mometer. It is possible to check the thermistor against
the thermocouple by measuring the wall temperature
difference with the thermistor, and this measurement
is self-consistent to within +0-06°C. Temperature in
the fluid layer as measured by the thermistor is
recorded on a Houston Instruments Model 6325 strip
chart millivolt recorder. The result is a history of the
temperature at a given vertical position as a function
of time and horizontal position in the fluid layer.

Output from the thermocouple junction, giving the
time dependent boundary conditions of the system,
could be read from a Hewlitt~Packard Model 6520
millivoltmeter or recorded directly on the Houston
Instruments strip chart recorder. The recorder, how-
ever, has only one channel, so that only one tem-
perature can be recorded while the other is visually
monitored. The usual procedure is to first record the
boundary conditions at the beginning of a run to insure
that the desired temperature-time curve is being pro-
duced, then record the probe temperature only during
the rest of the run. The maxima and minima of the
lower wall temperature are then hand written directly
onto the chart as the mean temperature, amplitude or
frequency is changed.
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F1G. 8. Temperature difference measured between upper
and lower walls as a function of time.

Figure 8 represents the output from the thermo-
couples giving the temperature difference between the
upper and lower walls of the convection chamber. The
curve can be seen to be very nearly sinusoidal. The
maximum deviation from a cosine curve is 205 per cent
of amplitude at ¢ = 75°. The RMS variation defined as

1 2n 1/2
[7 j- (cos o —x($)) d¢]
T Jo

is about 7 per cent of amplitude over the whole cycle.
These values are typical of those present during the
entire experimental program. Occasional larger vari-
ations were induced by pulley slippage, spring failure,
and other mechanical sources, but data taken under
these circumstances are not reported. The source of the
observed deviation from the desired sine curve is
believed to be the low power output of the fractional
horsepower Bodine synchronous motor used to drive
the cam. Near the top of the cycle, when the follower
return spring was at its maximum extension, the motor
was retarded prior to, and accelerated after, the peak.

These effects are not considered to have major impact
on the experimental results.

Ideally, the experiment should investigate the effect
of modulation over the widest possible range of w and &,
the nondimensional frequency and amplitude, respect-
ively. In particular, it is desirable to vary w in the
range from 1 to 10 or higher, while keeping ¢ of order .
The actual performance attainable in the device is
o~ 3 and ¢~ 030, with ¢ varying inversely with .
The largest frequency attainable at amplitude of order
unity is @ ~ 2. The explanation for this poor per-
formance hinges around the thermal behavior of the
lower aluminum plate whose temperature is to be sinu-
soidally modulated to impose the desired boundary
conditions upon the layer of fluid.

The lower aluminum plate has two purposes, namely,
to smooth out the thermal nonuniformities induced by
the discretely spaced heating wires and to uncouple the
imposed boundary conditions from the motions in-
duced in the convection chamber. The minimum plate
thickness used is 0-080-in thick, whose heat capacity
per unit area is 0-151 J/cm? °C. The heat flux through
the air layer at critical Rayleigh number is 1:15 x 107*
W/cm?, which means that the maximum rate of change
in temperature of the lower plate due to conduction
through the air layer is of the order of 0-014°C/min.
At three times critical this increases to about
(-03°C/min [9], still very low in comparison to the
imposed temperature difference of the order 1°C.

The other purpose of the lower plate is also ac-
complished in that no measurable horizontal tempera-
tures are apparent either on the plate itself or in the
air layer during subcritical operations. Nor are any
instances of flow patterns with wavelength comparable
to heating wire spacing ever observed; the usual size
of the convection rolls is four to five times wire spacing.
However, the fact that only rolls parallel to the heating
wires occurred is evidence that a preferred orientation
exists, so that a still thinner lower plate may cause
significant departure from the ideal boundary con-
ditions.

We now examine how the lower plate limits the
performance of the experimental apparatus. During the
first half of the cycle of oscillation, when the tem-
perature is decreasing, a quantity of heat must be re-
moved from the system to cause the plate to drop in
temperature by an amount

eAT
)

where ¢ is the amplitude of oscillation and AT is the
imposed temperature difference at R, = 1708. This
relation is true when (as in this case) the problem is
to be studied when the mean Rayleigh number R,, is
to be in the vicinity of R.. This temperature decrease
has to occur in half a cycle of oscillation, or

2 s
=H5)=a

where Q is the dimensional frequency of oscillation. The

T
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mean slope in the temperature time curve is thus
eAT
dT 2 QAT

H?z 7 2n

Q

This slope is fixed by the physical design of the
experiment: the plate thickness, the cooling channel,
the insulating layers between, and so forth, as has been
shown. The heat loss through the fluid layer itself is
negligible. We may now write the product which defines
system performance,

_dT 2
dt AT
In terms of nondimensional frequency
o 8T 20 5
dr AT d*'

The gap spacing is expressible in terms of the Rayleigh

number:
(= (ﬁm. EX)
AT ga
which leads to

ar O\ ,
sw=2n~<~R*m—‘/5> AT 733,

dr \ ga «!

If one wishes to optimize the performance of the system
by maximizing the product ew, three avenues of ap-
proach are available. First, a working fluid should be
chosen whose properties are such that the group

is as large as possible. An additional constraint as to
the choice of fluid is imposed. Theoretical predictions
indicate that the effects of modulation are at a maxi-
mum at Prandtl number in the vicinity of unity, falling
off rapidly on both sides of the peak. This limits the
choice of fluids to air at room temperature and water
in the vicinity of its boiling point. The product of
properties
v

2

*AK

is more than twice as large for air than for hot water.
It is also possible to show that the gap spacing d needs
to be very much smaller for water, and the attendant
difficulties of dealing with high temperature water need
no elaboration. The only reasonable fluid for this
investigation thus becomes air.

Assuming d T'/dz is optimized by clever design of the
heating wires, cooling channels, and so forth, one sees
that the performance of the system is inversely pro-
portional to AT3?, at a given operating Rayleigh
number R, . In the design of this experiment, it was
decided that the minimum practical AT for normal
operation at R,, = 1708 would be AT =~ 1°C; below
this value, uncontrollable fluctuations of the boundary
conditions become too large relative to the imposed

temperature difference. The maximum gap size was
thereby fixed at d = 248 cm. A carefully designed and
controlled future experiment may attain increased per-
formance by operating at a higher gap spacing.

The maximum stabilizing effect predicted theoreti-
cally is only about 20 per cent, indicating that R,, will
be in the vicinity of 1708. Using this value of R,
AT = 1°C, and the experimentally determined maxi-
mum d7T/dz, it is found that the greatest performance
of the system could be expressed

w2
It should be stressed that this is true only at R,, = 1708;
as R, — 0, the performance increases without limit for
a fixed gap size d.

Experience gained during the course of the exper-
iment, together with the preceding considerations,
indicates that the best way to improve system per-
formance is to abandon the heating wires and the
attendant necessity for a thick homogenizing plate.
Instead, the oscillating component of the boundary
temperature could possibly be induced by a motor
driven mixer valve which appropriately combines a
hot and a cold water supply.

3.2. Temperature measurements and their interpretation

The results will be presented in two parts. The first
part consists of a series of examples of typical traces,
with accompanying commentary setting forth possible
interpretations of the observed distortions in the tem-
perature profile. In support of these conclusions, results
of the theoretical investigation with similar boundary
conditions and probe initial conditions are presented
in Section 4.

The second part of the presentation consists of
various correlations of the data, giving observed trends
with w, ¢, and R,,. Points of agreement and disagree-
ment with previous and present analytical investi-
gations are included. These correlations are given in
Section 5.
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F1G. 9. Temperature trace, with z = (-5, R, = — 1400,

Rpax = 2040, 6 = 53, 0 = 1-23.

Figure 9 is a record of the temperature observed
by the 0-014-india probe mounted thermistor bead as
it travels horizontally through the fluid layer at a
vertical position z = 0-5 and linear traversing speed of
0-207 in/min. The boundary conditions in this example
are low enough that no observable motions are induced
in the fluid anywhere during the cycle. The variation
in peak temperature amounts to 0-145°C and is due
to an imposed change in the mean temperature dif-
ference. The amplitude and phase lag are 0-96 and 4°,
respectively, compared to the theoretical values of 1-0
and 7-1°. This figure is a typical experimental obser-
vation of the basic state.
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F1G. 10. Temperature trace showing the formation of con-
vection rolls, no modulation, with z = 0-4.

Figure 10 displays the onset of convection at ¢ = 0,
that is, without modulation. One sees the development
of symmetrical rolls of wavelength 1-87+0-05 cm com-
pared to the theoretical value of 192 cm. (For this case,
a smaller gap width was used than in the following
figures.) The Rayleigh number is being gradually in-
creased with time, so that at 4, R = 1620+ 85, while
at B, R = 1670+ 85. The experiment does not produce
precision results of critical Rayleigh number in the un-
modulated case, but does give a good picture of the
remarkable regularity of the thermal distribution
within the roll.

produce observable motion at any time during the cycle
of oscillation, then this figure is an example of in-
stability at R = R./2-6. The whole question of what
constitutes stability or instability as the terms are
applied to the experimental evidence is discussed in
more detail in Section S.

Figure 12 shows the flow pattern observed when the
maximum Rayleigh number is slightly higher than that
of the preceding figure (R, = 3240). The physical
behavior of the system is typical of that seen during
much of the experimental investigation in this fre-
quency range. Observe the points labeled A, B, and C.
Point A represents a local downdraft of magnitude
0-16°C which has appeared very near but slightly
following the peak of the temperature cycle. One can
imagine the probe travelling horizontally and encoun-
tering quiescent fluid only until just prior to point A.
Upon arrival at A, the probe encounters one edge of
a convection cell which appears as the observed de-
pression. The probe continues in space observing fairly
uniform, motionless fluid past points E and D until it
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F1G. 11. Temperature trace, with z = 0-5, R;;, = — 1570, Rpay = 2220, £ = 575, o = 0-513.

Figure 11 shows the temperature recorded by the
moving probe when we have modulation and when the
mean Rayleigh number is gradually increasing. “Time”
in this and subsequent figures refers to the time after
the probe has begun to move. R, refers to the
minimum Rayleigh number measured, whereas R,
refers to the maximum. The trace is typical of that
observed as the lower wall undergoes modulation at
high amplitude and low frequency and mean Rayleigh
number &= 55, @ = 0513, Ryean = 325. Under the
conditions of this figure, the thermal gradient is ad-
verse and supercritical from a quasistatic viewpoint
for 20 per cent of the cycle, adverse and subcritical
for 30 per cent, and favorable for nearly 50 per cent
of the time. After about an hour, during which the
mean Rayleigh number increases from 320 to 650, the
first small evidence of thermal convection begins to
appear at the peak of the temperature cycle, when the
maximum Rayleigh number is 2550. It can be seen
that this evidence consists of a decrease in the tem-
perature of the fluid of the order of 0:03°C at point 4,
representing the fact that the probe has encountered
a slight downdraft of cool fluid from above. Convec-
tion also probably occurs previously at point B. The
presence of this small amount of convection illustrates
a key point in any discussion of the effects of modu-
lation on the stability of the fluid layer: What criterion
is to be used to define stability? If one proposes to
define as unstable those boundary conditions which
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F1G. 12. Temperature trace, with z = 05, R,,,;, = 970,
Rmax = 3240! &= 0'595, w = 0513

arrives at B. Point B represents an updraft of roughly
0-256°C magnitude, or about 25 per cent of modulation
amplitude. Notice that it occurs significantly prior to
the peak in the lower wall temperature, so that the
local instantaneous Rayleigh number is about 2600
compared to 3200 at A. Nonetheless, the disturbance
at B can be seen to be larger in amplitude than that
at A. This effect is commonly seen during the course
of the investigation: updrafts appear as larger, more
concentrated thermal plumes while downdrafts are
more diffuse being lower in magnitude and larger in
horizontal extent. Qualitative similar patterns, but of
the opposite sense, have been reported by Spangenberg
and Rowland [9], in their optical investigation of
evaporatively cooled water. Convection in their study
appears in the form of plunging sheets of cooled fluid,
with warmer updrafts of lower velocity and larger
volume. Other types of flow patterns observed in un-
steady heating problems are discussed by Currie [10].
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The wavelength of the convection cell in Fig. 12 may
be determined from points 4, B and C. The speed of
the probe (0-207in/min) combined with the speed of
the chart (0-500in/min) gives the moving probe hori-
zontal distance scale: one inch on the paper is equi-
valent to a probe travel of 1:036 cm. The physical dis-
tance between events 4 and B thus becomes 291 cm;
the wavelength, or distance between 4 and C is 565 cm.
The predicted wavelength of the critical disturbance
at R = R, for the unmodulated case is 500 cm.

R. G. FINuCANE and R. E. KELLY

is closer to the local physical downdraft maximum
than A", while the latter is nearer the temporal maxi-
mum. The two effects are additive at D and E. while
they partially cancel at 4, B and C. Thus what at first
glance appears as a fairly random wavy pattern can
be seen to contain a surprising amount of detail about
the behavior of the system. All of the described effects
have beenduplicated in the numerical integration of the
nonlinear equations governing the motion within the
convection chamber.
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F1G. 13. Temperature trace, with z = 0-5, R, = 835, Rpax = 1810,
e= 054, 0=172.
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F1G. 14. Temperature trace, with z = 05, R;,, = 880, R,y = 2250,
e=0355w=178.

In Fig. 13 the probe speed and initial position are
adjusted so that a cell boundary is intercepted near the
peak of every cycle of oscillation. In this and the next
figure, one inch on the chart represents 2-2 cm of probe
travel in the convection chamber. The adjustment is
not precise, as can be seen from the fact that the
maximum intensity of the convective downdraft moves
from a position left of the peak at A4, to a centered
position at C, then off to the right of the lower wall
maximum at E. The updrafts cause an elongation of
the profile at the maxima in between the lettered
points. The asymmetry associated with the two local
maxima A" and A", and the opposite asymmetry at D,
are explained by the relationship between the physical
location of the probe and the temporal cycle of
oscillation. The local maximum at A" is higher than
that at A" because at A” the probe moves from the cell
boundary and does not observe the effects of the
downwash. Thus, the temperature is nearer its higher
conduction value. The actual location of the cell
boundary may thus be placed somewhat to the left of
A, between A and A'. Similar reasoning places another
cell boundary to the right of the minima at D or E.
The change in the pattern between C and D is much
more pronounced than that between B and C, and
the difference in local maxima surrounding D is greater
than that in those surrounding 4. These phenomena
are due to the continuous growth in the convection
strength, so that D” is both close physically to the
center of the cell boundary and nearer (temporally) to
the instant of maximum velocity. A’ on the other hand,

The varying effects produced when the probe passes
a given location in a convection cell at different times
in the oscillation cycle are graphically illustrated in
Fig. 14. Points A and C represent the probe passing
through the center of an upwelling of warm fluid at the
cell boundary near the maximum in the lower wall
temperature. The intervening downdraft would have
occurred near B, but at this instant in time the con-
vection has ceased, and the probe measures the con-
duction temperature only. One sees, however, evidence
of the downdraft before it ceases prior to B and after
it reappears just after B. This evidence is in the form
of a depression from the conduction profile in the
amount indicated by the dashed lines.

The next updraft following C should occur at point
D. Here again the convection has ceased, so that D is
at the same temperature as B, given by the conduction
solution. In contrast to the situation at B, no evidence
of convection either prior to or following D is apparent.
This is another example of the horizontal irregularity
of the convection observed in the modulated problem:
the updrafts are localized and intense, while the down-
drafts are more diffuse. The point C is displaced up-
ward farther from the conduction point than the sub-
sequent downdraft is displaced downward. Updrafts
are “missed” by the probe at D and E, but the down-
draft is visible in every intervening instance, i.c. between
Cand D, Dand E,and E and F.

The picture of the convective flow pattern presented
in Fig. 15 is more complex than that of previous
figures. The probe has been slowed so that lin on the
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FI1G. 15. Temperature trace, with z = 05, R,y = 820, R, = 4270,
e= 068w =123

chart represents 1:036cm of probe travel. Determi-
nation of the convection wave number is not too
precise, but one might visualize areas of downdraft
centered at 4 and B, with plumes ascending in the
vicinity of C and D. Although the exact location of the
cell boundaries is uncertain, the wavelength derived
from the distance A-B is 56cm. Of particular interest
in this figure are the points labeled E-I. At each of
these points, to varying degrees, the slope of the time—
temperature curve suddenly decreases. Peculiarities of
these bends in the profile are first, that they occur only
on the upswing, or increasing part of the cycle, and
second, that they are associated not with the convective
wave number, but rather with the time scale of the
oscillation. The nature of these disturbances was not
discovered until they unexpectedly began to turn up in
the numerical solution of the energy equations govern-
ing the fluid. They are due to the distortion of the
mean profile which occurs at the onset of convection.
This distortion of the mean, being smaller in magnitude
than the fundamental convection mode, is only visible
at a null point in the center of a roll where the velocity
of the fundamental is zero. One infers that a hysteresis
is present in the system which results in a gradual
decrease in convection as the Rayleigh number becomes
subcritical on the reverse side of the curve. Thus, no
sharp bend is present on the downslope side.

In the preceding figures we have presented some of
the qualitative behavior observed in the convection
chamber. Most of the types of patterns discussed have
also been predicted analytically in the relations to be
developed in subsequent sections. The main thrust of
the observational data, namely, the point of onset of
convection and how it varies with the parameters
of modulation, is presenfed in Section 5.

4. STABILITY ANALYSIS
The behavior of the fluid in the convection chamber
is governed by the equations of motion, continuity,
and energy. Chandrasekhar [11] presents details of the
derivation of these relations in the Boussinesq approxi-
mation. Retaining only linear terms, the equations may
be written in nondimensional form:

1ov 1

Lo g viv—Rok 41
Proc B PPV (@1
Voy=0 42)
08 wiT, )
i — V20, 4
kv (4.3)

In the above expressions, T; is the basic conduction
temperature given by (2.14), 6 = T— T, and the hydro-
static pressure has been subtracted. Additional scaling
factors are x/d for velocity and p,x2/d? for pressure,
with p,, being the fluid density at a reference tempera-
ture T,. If one takes the curl twice of equation (4.1),
utilizing the solenoidal character of the velocity field
(4.2), and some algebra, the vertical component of the
linearized equation of motion may be written:

& L\ 1@ Ty
—- ———V2|Viw= ——-RViw (44
(8t v )(Pr@t ) " 3z (44

# has been eliminated from (4.4) by using (4.3), and the
Prandtl and Rayleigh numbers are
gapd*

R= .
KV

v
Pr=—,
K

The procedure for developing (4.4) is the same as in
the unmodulated problem and is covered in [11]. We
now Fourier analyze the vertical component of the
disturbance velocity in the horizontal plane:

(4.5)

If W(z, 1) is furthermore expanded in a Fourier series
in z with time dependent coefficients,

w = W(z, tyexp(ila, x+ a,y)).

i
Wz, 1) = Y, xu(t)sinmnz

m=1

(4.6}

it is possible to satisfy the free-free boundary conditions
on w:
Pw_TW_ o at a=0,1
ozt T
If we substitute (4.6) into (4.4), multiply through by
sin nnz, and integrate with respect to z over the interval
(0, 1), the equation for the time dependent coefficient
X, I8

47

e

d’x, dx,
e +{1 +Pr)(n2n2+a2)mdt
Rd* eRa*Pr
Prl (n? 2 232 __ .
+ r((n n+a”) n2n2+a2)x,, T S
- 271 .
X Y Xm{—5—— [73coswt—y;ysinwt]} = 0 (4.8)
m=1 Y2473
where

vy = 2m’mnw
vy =t n—mp(n+m?-w
y3 = @n?(2n? + 2m?).

(4.9)



80 R. G. FINUCANE and R. E. K¥LLY

Equation (4.9) describes the behavior of small vel-
ocity disturbances as a function of time. For later com-
parison to the experimental results, we wish to deter-
mine the temperature field as well. The vertical com-
ponent of the linearized equation of motion gives the
desired connection:

0
%VZW = ga(V, 0) + W (4.10)
(Y

The observed convection mode was two dimensional
rolls induced by the heating wires as discussed in
Section 3.

If we take the horizontal dependence of 9 as

0 = 0(z, t)cos ax (4.11)

then, by substituting into (4.10) and using the previous
Fourier expansion for w(z, t), we obtain
cosax

2.2 2\ (i
—— m°n°+a”)(sinmnz
R m;( ) )

22 2 1 0x,

X <(m n+a )xm+Pr P )
We wish to simulate the temperature measured by a
probe moving perpendicular to the longitudinal axis
of the two dimensional roll. It is also convenient to
be able to adjust the probe velocity independently of
frequency and still be able to pinpoint its location
within a convection cell at a known time when the
lower wall temperature is, for example, at its temporal
maximum. The free parameter is the initial position of
the probe xo which may be set at time to = 0.

For definiteness, we see that the lower surface tem-
perature is at a maximum at ¢ = 2nk/w, k any integer,
while the horizontal maximum in temperature occurs
at a cell boundary at x = 2znk/a. A probe beginning at
X, and moving at a velocity V will arrive at the cell
boundary after a time

4.12)

2nk
%

a
f= — (4.13)
To arrange for the probe to perceive the maximum con-
vective temperature at a time ¢ = 27k/c, we see that

I v
]
a

The desired intersection in time and space will occur
after one complete cycle of oscillation when k = 1. Thus
in equation (4.12) we let

IV
x = 2n<———>+Vt.
a

It is desirable to fix the probe’s initial location in this
manner so that temporal and spatial effects on the
probe’s temperature may be separated. A similar result
could have been accomplished if x, = 0, but then the
interesting conjunction of thermal maxima occurs at
t = 0, when the initial conditions dominate the solution.

Equation (4.8) is similar to that investigated in [5]
and [6]. However, rather than using a stability
criterion, the procedure here is to integrate numerically

(4.14)

(4.15)

the second order system governing the time dependent
Fourier coefficients x,. The velocity and temperature
fields may then be reconstructed as a function of time
to enable direct comparison between the analytical
predictions and experimental results.

The problem was solved on the UCLA IBM 360,90
System, using Hammings predictor corrector method.
It was discovered that at v = 3 or less, the fourth term
in the series was always more than two orders of
magnitude smaller than the first, so the series was
truncated at three. In no case {«w < 20) were more than
six terms required.

During the course of the numerical investigations,
various initial conditions were used. At low frequency,
w = 1, the choice of initial conditions was found not
to significantly influence the results, as the amplitudes
x, tended to change rapidly in a time small compared
to one period whatever conditions were chosen. The
procedure finally used was to initiate the run with white
noise of amplitude 1072 at a time during the oscillation
cycle when the Rayleigh number is just passing critical
in the linear, unmodulated sense (R, = 271%/4).

The low frequency numerical results agree with those
in [5] in the sense that for a given set of boundary
conditions, the percentage change in critical Rayleigh
number will follow curves similar to those on Figs. 1-3,
provided the periodicity or amplitude criterion is
applied. It should be mentioned that [6] uses fixed
boundary conditions, while [4] and [5] use free bound-
ary conditions, but the results are quite close if plotted
according to the percentage change in the appropriate
critical Rayleigh number. Therefore, the free-free
boundary conditions are assumed throughout this
analysis.

Despite these points of agreement between this and
previous analyses, the system (4.8) fails to duplicate the
experimental results described in Section 3. For
example, at w =1, ¢ =1, R, = I'2R,, the amplitudes
x, grow to a magnitude of 10° during the part of the
cycle when the instantaneous Rayleigh number is super-
critical, then decay when R < R, to their initial value.
Although one is technically correct in describing such
behavior as marginally stable according to the period-
icity condition, the linear assumptions are clearly
invalid. Further, it does not seem reasonable to describe
a state where large amplitude convection occurs as
being marginally stable.

Using linear theory, one cannot duplicate the tem-
perature traces recorded by the moving probe in the
experimental program. The heart of the discrepancy is
the unbounded exponential growth which results from
the linear approximation. This growth is manifested in
two ways, illustrated in Figs. 16 and 17. In Fig. 16 the
disturbance has grown so large that a temperature
larger than that at either boundary results. If a lower
mean Rayleigh number is chosen, a more subtle dis-
crepancy arises. While a physically plausible profile
appears in Fig. 17, a comparison with Fig. 11, taken
under similar boundary conditions, gives a clue to the
problem. In the experimental trace, the disturbance
grows rapidly to some finite amplitude, then remains
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FiG. 17. Computed temperature trace at z = 05 Ry =0,
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at that general size until it rapidly disappears. This
results in a uniform depression at the peak of the cycle.
On the other hand, the linear theory gives a quali-
tatively different behavior wherein convection persists
at a Rayleigh number when the experiment shows
motion has ceased. The type of skewed profile seen in
Fig. 17 is not observed in the experimental data.

To provide an analytical description of the observed
experimental flows, the energy relations are derived
from the equations of motion. If we define

T= T+91,
N &

U=—, w=—,
dz’ 0x
where T is the mean or horizontally averaged tem-
perature, 8, is the departure from the mean so that
f; = 0, and ¥ is the nondimensional stream function.
The momentum equation in the Boussinesq approxi-
mation may be written

1 2, OO, O D,

S Ia s as]

v=>0

691

= V4 - R {4.16)

The mean temperature equation, which is derwed by
horizontally averaging the energy conservation equa-

ti i _ S
on, is 0T_6 . f"}f _ﬂ
ot az\ ‘ox/) &2’

The remaining terms in the heat-conduction equation
govern 0

(4.17)

00, v 0, _dv 28,
dt  O0x 0x Ox oz
N\ Y 6T_ 2
+az(6 6x) % 7 V30;. (4.18)
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Separating the mean temperature T
T=To+0,, (4.19)

where 8, represents the contribution of convection and
To is given by (2.14), we have for 8,

B, @ 0 AN 2%0,
ot oz\ 'ox/) &2
We now multiply equation {4.16) by ¢, (4.18) by 6,,
and (4.20) by 8, and integrate over the volume of the
field, assuming the motion is in the form of two

dimensional rolis of period 2n/a. It may be shown that
the resultant relations are

s | (o) + () e

(4.20)
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The limits of integration are 0 to 1 on z and 0 to 2x/a
on x. To these points the energy relations are exact.
Following Stuart [12], we use the shape assumption,
presuming that the fundamental convection mode has
the same shape as that predicted by linear theory. It is
further assumed that the harmonics are sufficiently
smaller than the fundamental that they may be ignored.
This latter assumption restricts the validity of the
approach to low frequency of modulation. We let

1
Y = EA(I) cos axsinmz

0, = B(t)sinaxsinnz (4.24)

6, = C(t)sin2nz

so that we have free-free rolls and heat conduction only
at the boundaries. A differential equation for C is
derived by substituting (4.24) into (4.23), giving

dC =

AB = ~4

It ~—+z 3 n?C.
Using (4.21), we can derive the following expression
for 4:

(4.25)

d4 RBa? .
@ —Pr((a +n2)A—( 3 2)) (4.26)
Finally, to solve for B we use (4.22). We also use the
low frequency approximation for the stationary ther-
mal gradient:

i

— = — {1 +¢&coswt)
8z

>3

4.27

so that
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This leads to the relation governing B:
dB
dr

Equations {4.25), (4.26), and (4.29) are now integrated

numerically to solve for the time dependent convection

within the fluid layer.
If one sets ¢ = 0, d/dr = 0, it is possible to solve for
the steady state amplitude of the unmodulated problem.

One finds

o

W= ——o

ex

= —B(®+nY)+ Al +ecoswt) +nAC.  (4.29)

142
= 27(2a* + 21 [h#] sinaxsinnz (4.30)
R,

in agreement with the second order results of Malkus
and Veronis [13] and Segel [14]. With e = 0,d/dr # 0,
the numerical integration gives the temperature sensed
by the moving probe during the onset of convection.
Results of this integration are presented in Fig. 18,
which is seen to be in qualitative agreement with the
experimental trace in Fig. 10.

The numerical investigation of the energy equations
is conducted in a manner analogous to the experimental
program described in Section 3. A series of cases are
examined, over the experimental range of variables,
0 <¢ < 1,0 <@ < 1. A parametric presentation of the
results is given in Section 5, and some typical curves
are depicted in Figs. 19 and 20. Figure 19 has exactly
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the same boundary conditions as Fig. 17 and should
be compared to the experimental curve in Fig. 11, One
sees that the onset of observable convection is quali-
tatively correct in Fig. 19. In Fig. 20, many of the
qualitative features of the experimental evidence in
Section 3 are duplicated. One sees distortion of the
mean at points 4 and B, and typical updraft and
downdraft patterns at C and D. The probe velocity in
this figure has been adjusted so that cell boundaries
are encountered at the peak of the lower wall tem-
perature at C and D. The origin of the asymmetry at D
and other salient features of this curve are discussed
in Section 3.

A significant departure from the periodicity type
behavior is observed in the solution of the energy
relations. At low frequency (@ = 1) the convection
amplitude does not grow over several cycles of oscil-
lation when the mean Rayleigh number is supercritical
from the linear, periodicity point of view. Instead, the
energy relations predict that the amplitude of convec-
tion is the same at the peak of the first cycle of
oscillation as on succeeding cycles. This is found to be
true for 02 <& <10, I'2R, < Rpeun < SR, where
R, = 657. This conclusion is fully supported by the
experimental data, where the convection time constant
always appears to be smaller than a cycle of oscillation
atw =1,

5, CORRELATIONS AND CONCLUSIONS

In this section we present a parametric summary of
the experimental and analytical data compiled during
the project. The experimental data is given in two
ranges of modulation amplitude, rather than at discrete
values of ¢ Since ¢ is defined in terms of the imposed
mean temperature gradient, it is not possible to vary ¢
independently. In the first range, 0-3 < ¢ < 0-5, while
in the second, 0-85 < ¢ < 1. The experimental results
are plotted with respect to R = 1708, while for the
numerical curves R.= 658. In Fig. 21, instances of
observable convection, defined as a 5 per cent distortion
of the basic profile are indicated by @, while O indicates
no motion or distortion of the conduction profile. The
curve labeled 1 is the amplitude criterion from [5] for
& = (3, while curve Il is from the same source but for
&= 05, The curve labeled IIT is derived from the
analysis of Section 4 and represents the boundary of
observable motion at ¢ = 0-5.

RIR, -

Freguency, w

F1G. 21. Onset of observable motion. @ indicates motion
observed: O indicates conduction only. 03 < & < 05,
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The quasi-steady criterion (2:7) gives values for
(R/R.—1)as —023 and ~033for ¢ =03 and ¢ = 05,
respectively.

Figure 21 shows positive evidence of stabilization at
w = 3-5. The states indicated by these high frequency
experimental points are stable by any of the criteria
discussed. Stated simply, no convection occurs even
though the mean Rayleigh number is nearly 10 per cent
higher than that required to produce well defined con-
vection rolls in the unmodulated case.
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F1G. 22. Onset of observable motion. @ indicates motion
observed; O indicates conduction only. 0-8 < ¢ < 1-0.

Figure 22 is similar to Fig. 21 except that 0-85 <
& < 1. For this case, the quasi-steady criterion (2.7) gives
values of (R/R.~ 1) of —0-44and — 050 fore = 08 and
1-0, respectively. The dashed curve is derived from the
numerical integration of the energy relations in Section
4, There is very little variation with w in the experi-
mental data as compared to Fig. 21. Since the data at
a given frequency were all taken together, this effect
would not appear to be ascribable to error in technique
or measurement. The theoretical curve, on the other
hand, shows strong frequency dependence. An ex-
planation for this evident conflict is not readily
apparent. Unfortunately, it was impossible to obtain
large amplitude data at w ~ 3, as discussed in Section 3,
and to see whether stabilization might occur for higher
frequency. In this context, it should be mentioned that
Yih and Li [15], investigating a problem for which
upper and lower surface temperatures are modulated
180° out of phase, have found that, although stabil-
ization occurs for low values of ¢, destabilization can
occur for larger values of e.

In Figs. 23 and 24, an attempt has been made to
corrclate the experimental data to the periodicity
criteria in [5] and [6]. In these figures, @ represents
aflow in which evidence of convection appears over the
entire cycle of oscillation, while © indicates conduc-
tion only exists at some point in the cycle. One presumes
that if a state is unstable in a periodicity sense, con-
vection will eventually spread to the entire cycle. It
should be mentioned that the determination of stability
in this sense involves considerable subjective judgment,
as it is often difficult to separate convection from con-
duction at high Rayleigh number, particularly at low
frequency.
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FiG. 23. @ indicates convection occurs over entire cycle of
oscillation; O indicates convection has ceased at some point
in the cycle. 03 < ¢ < 05,
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F1G. 24. @ indicates convection occurs over entire cycle of
oscillation; O indicates convection has ceased at some point
in the cycle. 08 < ¢ < 1-0.

InFig.23, the curve L is the periodicity criterion from
[5], e=0511is [S], e=03, and 11l is [6}, ¢ = 4.
It should be recalled that curve III is the fixed wall
case (as is the data), while 1 and II have the free-free
boundary condition. The difference between free and
fixed boundaries, on a percentage basis, is seen to be
smaller than the experimental scatter.

In comparing Figs. 21 and 23, it can be seen that
the periodicity and amplitude criteria merge at about
w =3, for 0-3 < ¢ < 5. This is in agreement with the
results of Rosenblat and Herbert {5]; see also Fig. 3.
Under the conditions w = 35, 03 < ¢ <05, a given
flow is either all conduction or all convection. At high
frequency, low amplitude, convection sets in nearly
simultaneously over the whole cycle.

In Fig. 24,1 is from [5], e = 1; I1 is from [6], £ = 1.
Again, the scarcity of data at high frequency does not
allow evaluation of frequency effects.

Figure 25 shows the maximum amplitude of con-
vection temperature difference measured as a function
of Rpax— R, at a frequency @ = 1. It can be seen that
this amplitude correctly follows the theoretical quasi-
steady (R~ R}!"? dependence. On the other hand, the
higher frequency data in Fig. 26, v = 272 and 0 = 1-8,
shows considerable scatter and is closer to a linear
dependence on R—R,. At high frequency one should
not expect the quasi-static approximation to be valid.
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FiG. 25. Convection amplitude as a func-
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F1G. 26. Convection amplitude as a func-
tion of R— R,, at higher frequencies.

5.1. Concluding remarks

Although the frequency range studied was rather
severely restricted, the experimental and theoretical
data are seen to support the previous analytical work,
particularly the amplitude condition results of Rosen-
blat and Herbert [5]. Although apparently of interest
in determining the onset of continuous convection, the
periodicity condition does not describe the onset of
observable motion in the fluid at low frequency. At

w = 3, the two conditions merge, with the periodicity
condition then properly defining the stability limit at
> 3.
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NAISSANCE D'INSTABILITES DANS UNE COUCHE FLUIDE CHAUFFEE
SINUSOIDALEMENT PAR LE DESSOUS

Résume—Le probléme étudié concerne P'effet de la modulation thermique sur la stabilité d’une couche
fluide chauffée par le dessous. Une expérience a été réalisée dans laquelle une couche d’air est soumise
a un chauffage sinusoidal autour d’une valeur moyenne non nulle. Une analyse numérique des ¢quations
de stabilité linéaire a montré que I'hypothése de linéarité n’est pas valable aux faibles fréquences de
modulation étudiées expérimentalement. Une analyse non-linéaire utilisant ’hypothése de forme et des
conditions aux limites libres a ¢té développée et traitée numériquement. On a trouvé, a la fois analytique-
ment et expérimentalement, qu’aux faibles fréquences la modulation est destabilisante, tandis qu'aux
fréquences plus élevées une certaine stabilisation apparait.



Instability in a fluid layer heated from below

INSTABILITATSBEGINN IN EINER SINUSFORMIG VON UNTEN
BEHEIZTEN FLUSSIGKEITSSCHICHT

Zusammenfassung—Es wird der EinfluB thermischer Modulation auf die Stabilitdt einer von unten
beheizten Fliissigkeitsschicht untersucht. In einem Experiment wurde eine Luftschicht einer
sinusformigen Beheizung um einen Mittelwert unterworfen. Eine numerische Analyse der linearen
Stabilitdtsgleichung zeigte, daBl die Linear-Annahme ungliltig ist fiir die kleinen experimentell untersuchten
Modulationsfrequenzen. Eine nichtlineare Analyse mit Annahmen iiber die Form und freie Begrenzung
wurde entwickelt und numerische Uberpriift. Es ergab sich sowoh! experimentell wie auch analytisch,
daf flir geringe Frequenzen die Modulation destabilisierend wirkt, wihrend fiir hohere Frequenzen ein
Stabilisierungseffekt auftritt.

BO3HMKHOBEHUE HEYCTOMYUBOCTH B CJIOE XUIKOCTH,
HATPEBAEMOW CUHYCOUJAJIBHO CHU3Y

Annotamus — Wccneayetca >dhdbexkT TennoBbiX KoneGaHMi HAa yCTOMMHBOCTH CNOSL XKHAKOCTH,
HArpeBaeMoi CHU3Y. DKCIEPUMEHT MPOBOAMJICA B BO3AYLIHOM CJI0€, MMOABEPKEHHOM CHHYCOMIANb-
HOMY Harpesy B Ipeleiax CpPeXHEro HEHYNIEBOTO 3HaveHus. YMcleHHbll aHanu3 JHHEHHBLIX ypaB-
HEHMI YCTOHYMBOCTH moKasasl, YTO AOMYILUeHHE JIMHEHHOCTH SABISETCA HENPHEMIIHMBIM IIPH HU3ZKUX
yacToTax KojeGaHnil, n3yueHHbIX 3KCMepUMEHTanbHO. Pa3paboTan M peaiv3oBaH YUCIEHHO HENH-
HelHBIA aHanu3 ans onpeaeseHHoN reoMeTpuueckoit GoOpMbl M 3a0aHHBIX YCJIOBHAX Ha CBOOONHOIM
rpannue. Kak 3xcrnepMmeHTanbHo, TaK H TEOPETHYECKH HAW ICHO, YTO NP HU3KKX YACTOTAX KosiebaHus
ABNAIOTCA OeCTAOMNUINPYIOWLIMMH, B TO BPEMSA KaK TPH BBICOKHX 4acTOTax Ov€BHAHA HEKOTOpas
YCTORYHUBOCTS.
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