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Abstract-The problem under investigation is the effect of thermal modulation on the stability of a fluid 
layer heated from below. An experiment was performed in which a layer of air was subjected to sinusoidal 
heating about a nonzero mean. A numerical analysis of the linear stability equations indicated that the 
linear assumption is invalid at the low frequencies of modulation studied ex~r~mentall~. A nonlinear 
anafysis employing the shape assumption and free boundary conditions was developed and examined 
numerically. it was found both experimentally and analytically that for low frequencies the modulation 

is destabilizing, whereas at higher frequencies some stabilization is apparent. 

NOMENCLATURE 

wave number; 

2, B, C, temperature amplitudes (4.24); 
4 fluid layer depth; 

9* gravitational acceleration; 
k, m, n, integers; 

Pr, Prandtl number; 

R, Ray~e~gh number; 

Re, real part ; 
T, temperature; 

4 time; 

x, Y, z, space coordinates; 
u, 0, w, velocity components; 

v, velocity vector; 
v, probe velocity. 

Greek symbols 

V, kinematic viscosity: 

8, amplitude of oscillation; 

0, frequency of oscillation ~nond~~ns~ona~]: 

R, frequency of oscillation [dimensional]; 
K, thermal diffusivity; 

P. thermal gradient; 
V2, Laplacian operator; 

91 angular position; 
0, T-T,; 

x3 departure from sine curve; 

AL\, difference; 

P. density; 

Yt5?‘2*Y39 nondimensional qualities (4.9); 
V 1, horizontal derivative; 

01, departure from mean temperature; 
no~~ension~ stream function; 
convection component (4.19). 

Subscripts 

c, critical; 

;I 
periodicity criterion; 
initial conditions; 

m, mean. 

Superscripts 

* > d~e~iona~ quantity; 
I 

amplitude; 
, horizontal average. 

1. INTRODUCTION 

THIS paper concerns the stability of a layer of fluid 
when heated from below in a periodic manner with 
time. It is knawn that the stability of many physical 
systems may be strongly influenced by temporal modu- 
lation of an appropriate parameter. Closely allied 
mathematically to the present case is the problem of 
circular Couette flow, i.e. the flow between two co- 
axially rotating cylinders, when the inner cylinder has 
a velocity which varies periodically with time. Previous 
experimental results of Donnelly [ 1,23 have indicated 
that a viscous fluid is stabilized, in the sense that some 
averaged disturbance amplitude can be less for the 
modulated case, with the degree of stabilization rising 
from zero at high frequency to a maximum at a 
frequency of 0.274(v/d2), where d is the gap between 
the cylinders and v is the kinematic viscosity. How- 
ever, due to experimental limitations, behavior at very 
low frequencies was not clearly established, although 
this is precisely the regime for which the instantaneous 

response might be of greatest importance, as will be 
discussed later. Thompson [3] has presented numerical 
and experimental evidence that oscillating the inner 
cylinder about a zero mean results in maximum 
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stabilization at high frequency, decreasing monoton- 
ically as frequency goes to zero. No experimental 
results other than those presented here exist, to the 
authors’ knowledge, for the case of thermally modu- 
lated convection, although Benard type problems with 

various types of thermal modulation have received 
considerable analytical attention. For the present case 
of modulation at the lower surface, Venezian [4] found 

that the modulation would be stabilizing, with maxi- 
mum stabilization occurring as the frequency goes to 
zero. The analytical approach was a linear perturbation 

analysis with quantities expanded in powers of ampli- 
tude of oscillation s, assumed to be small. Rosenblat 
and Herbert [S] investigated the linear stability by 
expanding in powers of the nondimensional frequency 

of oscillation m, at arbitrary amplitude. (u = Rd*/tc, 

where 0 is the dimensional frequency, d is the depth 
of the fluid layer, and K is the thermometric con- 
ductivity.) The free-free boundary conditions were used 

in both of these analyses. Rosenblat and Tanaka [6] 

used a Galerkin procedure to solve the linear problem 
when the lower wall temperature is being modulated 

at finite amplitude and frequency and employed the 
more realistic rigid wall boundary conditions. 

A basic feature shared in part by 14-61 is the 

utilization of a certain condition, based on Floquet 
theory, to delineate the stability boundaries, namely, 
the periodicity condition: ifan infinitesimal disturbance 

achieves net growth over one cycle of oscillation, the 
state is unstable. Given enough cycles, the disturbance 

will grow to finite size. The periodiciry criterion is a 
sufficient condition for instability, but from an obser- 

vational and practical viewpoint, it must be considered 
more carefully. Even if an infinitesimal disturbance has 
no net growth over a cycle, it is possible that it has 
grown to finite size during the unstable part of the 
cycle and then decayed. Hence the heat transfer. for 
instance, will be significantly different from that pre- 

dicted by the conductive solution during parts of the 

cycle. 
Similar remarks may be made even if the full non- 

linear equations are used. An initially small but finite 
disturbance may exhibit net decay over a cycle yet 

still produce observable motion and an increase in heat 
transport during some part of the cycle. In a real 
experiment it is irrelevant if a purricular disturbance 
decays over many cycles, because naturally occurring 
background noise will give rise to new disturbances and 

observed motion continuously. 
Some results of the investigations reported in [9-l l] 

are presented in Figs. 1 and 2, where the periodicity 
condition is used to solve for an upper bound of stable 
states. In these figures w is the nondimensional fre- 
quency, E the nondimensional amplitude of modulation, 
a is the wave number, and Pr the Prandtl number. On 
the vertical axis, R, is the critical Rayleigh number of 
the unmodulated problem according to linear theory, 
while R, is the critical Rayleigh number in the modu- 
lated case as determined by the periodicity criterion. 
These figures indicate that Rp > R, and that maximum 
stabilization occurs as Q --t 0, rather than at some 
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FIG. 1. Variation ofcritical Rayleigh number with frequency 
according to the periodicity condition, with Pr = 1, R = 1, 

(1 = 3.1 [4]. 
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FIG. 2. Variation of critical Rayleigh number with ampli- 
tude of modulation, with w = 1, Pr = I. LI = 3.1 [5]. 

finite frequency as observed in the Couette flow analog 
by Donnelly [l]. In view of the doubtful validity of 
the periodicity criterion when used in conjunction with 

linear theory and low frequency of modulation, 
Rosenblat and Herbert [S] propose the amplitude con- 
dition, which describes as unstable any disturbance 
which increases during the cycle by an arbitrary factor 
of ten. The upper bound in Rayleigh number deter- 
mined by this criterion is presented in Fig. 3. For 

comparison, the periodicity condition results for the 
same boundary conditions are included on Fig. 3 to 
show the two criteria intersecting at w z 3 when 
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FIG. 3. Comparison between critical Rayleigh 
number as given by the periodicity and amplitude 

conditions, with E = 0.5, Pr = 1, a = 3.1 [5]. 
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E = 0.5. Thus the amplitude condition serves the double 

purpose of describing the qualitative behavior at low 

frequency and indicating the minimum frequency for 
which linearization is valid. 

The object of the present experiment is to investigate 
the effects of frequency and amplitude of oscillation on 
the critical Rayleigh number of the fluid layer. Rather 
than choosing a criterion for the onset of instability, 
the experimental results are first presented from an 
observational point of view. The same spirit is used in 
the analytical investigation-the behavior of the fluid 
under a given set of boundary conditions is followed 

numerically as a function of time. In this way, an 
attempt is made to describe curves in the E--W plane 
which define the stability in a realistic manner. 

2. THE BASIC STATE OF UNSTEADY CONDUCTION 

A fluid layer is confined between two horizontal walls 
separated by a distance Ii and of infinite horizontal 

extent. The upper wall has zero temperature, and at 
the lower wall 

T* = ~d(l+~cosCit*). (2.1) 

T* is temperature, fl the thermal gradient, E the ampli- 

tude, R the frequency of modulation, and t* is time. 
The asterisk denotes a dimensional quantity. In the 
basic state, before the onset of convection, the thermal 

profile of the layer is governed by the diffusion equa- 
tion. With scaling d for length, d’/K- for time, and /3d 
for temperature, the equations and boundary condi- 
tions may be written in nondimensional form : 

dT”=~2T, 
C3t 

(2.3) 

where 

To = 0 z=l 

To= ~+ECOS~~ z=O 

o = fid2/K. 

(2.4) 

The solution for To is 

T = l_z+Re sinh((l-~)(l+i)(w/2)‘~~)se~“” 
0 

i 
sinh((l+ i)(w/2)“‘) 

(2 5) 

’ 

where Re denotes the real part, or 

To = AE cos(wt + 4) + (1 -z) 

where A(z) is the amplitude and 4(z) is the phase angle. 
Figure 4 pictures the temperature at ux = 0. Included 
on this figure are same experimental measurements of 
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FIG. 4. Static temperature as a function of 
vertical position, with E = 1, t = 0. 
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FIG. 5. Phase lag I#J as a function of vertical 
position. E = 1. 

peak temperature at w = 1.2, at mean Rayleigh number 
R, = -2100. On Fig. 5 is plotted the phase lag 4 as 
a function of z and w = 1, 2, and 10. Included are 

measurements of phase lag taken at the midpoint of 
the layer, z = 0.5. Correct quantitative agreement is 

evident. 
The solution for the time dependent temperature 

profile is presented in detail in the preceding figures 
to illustrate an important feature of the physical 

problem at w = O(1) or less. At this frequency the 
temperature gradient is linear, with the numerical re- 
sults indicating a maximum departure from linearity 
of the order of one part in 103. This conclusion is 

supported completely by the experimental results, when 
only small, random variation from a best fit straight 
line were measured at o z O(1). The fact that at low 

frequency the temperature profile is linear suggests a 
quasi-steady approach to investigating the limit w + 0. 
One argues that if 

IL-,,,, (1 + E) > R, (2.6) 

convection will occur during part of the cycle for a 
sufficiently low frequency. R,,,, is the mean Rayleigh 

number for modulated lower wall, while &is the critical 
Rayleigh number for the unmodulated problem. The 
logical justification for the inequality (2.6) is that the 
left-hand side represents the maximum Rayleigh num- 

ber attained during the cycle of modulation, which, if 
the inequality holds, produces an unstable linear 
gradient in the fluid. It will always be possible to choose 
an o low enough that the unstable gradient is main- 
tained long enough for convection to appear. Thus for 
any E the critical mean Rayleigh number is seen to be, 
in the limit w + 0, 

(2.7) 

A low frequency modulation will be destabilizing; for 
E = 1 this destabilization amounts to 50 per cent. This 
conclusion is supported by the experimental investi- 
gation, which typically shows measurable convection 
occurring at the peak of the cycle and disappearing as 
the lower wall temperature decreases. This intuitive 
criterion for stability has recently been confirmed 
rigorously by Homsy [7], who used the energy method 
to investigate analytically the stability of the case 
studied here. 
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3. EXPERIMENTAL INVESTIGATION 

3.1. Experimental apparatus 
The experimental arrangement is composed of the 

convection chamber containing air and associated 
instrumentation, the mechanical drive which produces 
asinusoidal heat flux, the cooling baths for maintaining 
upper and lower surface temperatures, and the various 
recording and measuring devices which provide in- 
strument readout. 

The convection chamber itself is depicted sche- 
matically in Fig. 6. The chamber is bounded in the 
horizontal directions by a 20-0~ square of adjustable 
height. Since the maximum height used is 2.5c, the 
minimum aspect ratio is 8:i. Davis [S] has shown that 
for an aspect ratio larger than 6: 1, the critical Rayleigh 
number should be similar to that of an infinite layer. 

FIG. 6. Schematic diagram of convection chamber. 

through two channels of similar design. The channels 
are constructed of two 0.125in thick pieces of plate 
glass about 1%in square separated by spacers along 
two edges to form a laminar sheet flow channel 0.12%in 
high. The assembly is glued together, with a plenum 
chamber at each end completing the structure. 

The oscillating component of the lower wall tem- 
perature is produced by the device sketched in Fig. 7. 
The heating wires are connected to a O-1 50 V AC variac 
whose control knob is cam driven so that its angufar 
position 4 is given by (/I -- k /sin r/ ‘,“, where t is time, 
and the minus sign applies when sin t < 0. 

The upper wall, which is kept at constant tem- 
perature, is formed by a glass plate, itself the lower 
plate of the upper cooling bath. The lower surface of 
the chamber is a machined aluminum plate, whose 
temperature is controlled by two independent systems. 
The first of these is a 0.005india stainless steel wire, 
strung at intervals of 0.5 in and electricaily heated in 
a manner which produces the sinusoidal component 
of the lower surface temperature. Separating the bare 
heating wires from the aluminum plate is a @QISin 
sheet of mica which provides electrical and thermal 
insulation to insure an evendistribution in the spanwise 
temperature of the plate. Below the wires is the lower 
cooling channel, whose purpose is to maintain the 
steady component of the lower surface temperature. 
Four 0.375.in thick plexiglass members, machined to 
various heights, placed on edge and glued at the corners, 
form the sides of the chamber. 

The upper wall of the air layer is kept at a constant 
temperature by a Precision Scientific Company Cat. 
66600 bath pumping at 1.5 galimin. This bath is capable 
of maintaining its water tem~rature to *0,02”C. At 
this Bow rate, the increase in water temperature due 
to the heat transferred through the layer of air at a 
Rayleigh number three times critical (R P 5000) is 
computed to be less than O@Ol”C. 

The steady component ofthe lower wall temperature 
is maintained by a Neslab Instruments No. 690606 
bath with a pumping capacity of 3 gal/min. The maxi- 
mum spanwise temperature variation in the lower water 
bath due to the heat lost from the heating wires is 
about O*Ol”C under the worst case of assuming that 
all the energy is lost to the coolant. No spanwise 
non~nif~rm~ties are observed which are ascribed to 
rhis source. 

The water from the two cooling baths is pumped 

FIG. 7. Mechanism for producing oscillating component of 
lower wall temperature. 

The instrumentation consists of two copper-constan- 
tan thermocouples which measure temperature differ- 
ences between the upper and lower surface and a probe 
mounted thermistor to determine the local temperature 
at any point in the convection chamber. 

The temperature probe is mounted in an overhead 
carriage mechanism and driven by a jack screw device 
to permit linear traversing speeds horizontally through 
the chamber ranging from 1 mm to lOcm/min. The 
jack screw is driven through reduction gearing by a 
fractional horsepower Bodine synchronous motor. 

A moving probe was found to give a much more 
reliable and repeatable indication of the onset of con- 
vection than a stationary one. With no convection 
present, the stationary and moving probes produce 
identicalsine curves. As convection begins, a stationary 
probe reveals only a gradual distortion of the curve, 
whereas a moving probe imposes an additional sine 
wave of different period whose presence is readily 
detectable. Care is required to insure that the probe 
velocity selected is not coincident& equal or nearly 
equal to the product of modulation frequency and 
convection roll wavelength; such a probe is effectively 
stationary. 

The thermistor probe itself consists of a 16in long 
hollow, stainless steel tube with 0.031 in O.D. Soldered 
to the tip of the probe was a O.OOl-india platinum- 
iridium lead wire of a Fenwall thermistor bead 0.014-in 
thick. The other thermistor lead wire was soldered to 
a single strand copper wire insulated with lacquer and 
inserted in the center of the hollow tube. This arrange- 
ment provides a rigid probe of small size and smooth 
exterior to minimize the disturbance of the working 
ffuid. 
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The Fenwall bare bead thermistor used has a time 

constant in still air of 1.7s. The nominal resistance at 

25°C is 15 x 106Q with a coefficient of resistance 

change with temperature of - OU4/“C. 
A standard thermistor bridge is designed and cali- 

brated against a precision mercury in glass ther- 

mometer. It is possible to check the thermistor against 
the thermocouple by measuring the wall temperature 
difference with the thermistor, and this measurement 
is self-consistent to within f0.06”C. Temperature in 
the fluid layer as measured by the thermistor is 

recorded on a Houston Instruments Model 6325 strip 
chart millivolt recorder. The result is a history of the 

temperature at a given vertical position as a function 
of time and horizontal position in the fluid layer. 

Output from the thermocouple junction, giving the 
time dependent boundary conditions of the system, 
could be read from a Hewlitt-Packard Model 6520 

millivoltmeter or recorded directly on the Houston 
Instruments strip chart recorder. The recorder, how- 
ever, has only one channel, so that only one tem- 

perature can be recorded while the other is visually 
monitored. The usual procedure is to first record the 
boundary conditions at the beginning of a run to insure 

that the desired temperature-time curve is being pro- 
duced, then record the probe temperature only during 
the rest of the run. The maxima and minima of the 
lower wall temperature are then hand written directly 

onto the chart as the mean temperature, amplitude or 
frequency is changed. 

FIG. 8. Temperature difference measured between upper 
and lower walls as a function of time. 

Figure 8 represents the output from the thermo- 
couples giving the temperature difference between the 
upper and lower walls of the convection chamber. The 
curve can be seen to be very nearly sinusoidal. The 
maximum deviation from a cosine curve is 20.5 per cent 
of amplitude at 4 = 75”. The RMS variation defined as 

1 
l/2 

60s 4 - ~(44~ d4 

is about 7 per cent of amplitude over the whole cycle. 
These values are typical of those present during the 

entire experimental program. Occasional larger vari- 
ations were induced by pulley slippage, spring failure, 
and other mechanical sources, but data taken under 
these circumstances are not reported. The source of the 
observed deviation from the desired sine curve is 
believed to be the low power output of the fractional 
horsepower Bodine synchronous motor used to drive 
the cam. Near the top of the cycle, when the follower 
return spring was at its maximum extension, the motor 
was retarded prior to, and accelerated after, the peak. 

These effects are not considered to have major impact 

on the experimental results. 

Ideally, the experiment should investigate the effect 

ofmodulation over the widest possible range of o and F, 

the nondimensional frequency and amplitude, respect- 
ively. In particular, it is desirable to vary w in the 

range from 1 to 10 or higher, while keeping E of order I. 
The actual performance attainable in the device is 
w - 3 and E - 030, with E varying inversely with 01. 
The largest frequency attainable at amplitude of order 
unity is w - 2. The explanation for this poor per- 
formance hinges around the thermal behavior of the 

lower aluminum plate whose temperature is to be sinu- 
soidally modulated to impose the desired boundary 
conditions upon the layer of fluid. 

The lower aluminum plate has two purposes, namely, 
to smooth out the thermal nonuniformities induced by 

the discretely spaced heating wires and to uncouple the 
imposed boundary conditions from the motions in- 

duced in the convection chamber. The minimum plate 
thickness used is 0.080-in thick, whose heat capacity 

per unit area is 0.151 J,cm2 “C. The heat flux through 
the air layer at critical Rayleigh number is 1.15 x lO--4 

W/cm2, which means that the maximum rate of change 
in temperature of the lower plate due to conduction 
through the air layer is of the order of 0.014”C~min. 

At three times critical this increases to about 
OOPC/min [9], still very low in comparison to the 

imposed temperature difference of the order 1°C. 
The other purpose of the lower plate is also ac- 

complished in that no measurable horizontal tempera- 

tures are apparent either on the plate itself or in the 
air layer during subcritical operations. Nor are any 
instances of flow patterns with wavelength comparable 
to heating wire spacing ever observed; the usual size 
of the convection rolls is four to five times wire spacing. 

However, the fact that only rolls parallel to the heating 
wires occurred is evidence that a preferred orientation 
exists, so that a still thinner lower plate may cause 

significant departure from the ideal boundary con- 
ditions. 

We now examine how the lower plate limits the 

performance of the experimental apparatus. During the 
first half of the cycle of oscillation, when the tem- 
perature is decreasing, a quantity of heat must be re- 
moved from the system to cause the plate to drop in 

temperature by an amount 

CAT 
T=T 

where E is the amplitude of oscillation and AT is the 

imposed temperature difference at R, = 1708. This 
relation is true when (as in this case) the problem is 
to be studied when the mean Rayleigh number R,,, is 
to be in the vicinity of 5. This temperature decrease 
has to occur in half a cycle of oscillation, or 

2n R 
r=f - =-, 0 n n 

where Q is the dimensional frequency of oscillation. The 
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mean slope in the temperature time curve is thus 

cAT 

dT 2 &AT 
_=-=__ 
dr T[ 2n 

R 

temperature difference. The maximum gap size was 
thereby fixed at d = 2.48 cm. A carefully designed and 
controlled future experiment may attain increased per- 
formance by operating at a higher gap spacing. 

This slope is fixed by the physical design of the 
experiment: the plate thickness, the cooling channel, 

the insulating layers between, and so forth, as has been 
shown. The heat loss through the fluid layer itself is 

negligible. We may now write the product which defines 
system performance, 

dT 2n 
En=---. 

dr AT 

The maximum stabilizing effect predicted theoreti- 
cally is only about 20 per cent, indicating that R,,, will 

be in the vicinity of 1708. Using this value of R,,,. 
AT z l”C, and the experimentally determined maxi- 
mum dT/dr. it is found that the greatest performance 

of the system could be expressed 

i:<o Z 2. 

It should be stressed that this is true only at & = 1708; 

as R, + 0, the performance increases without limit for 
a fixed gap size (1. 

In terms of nondimensional frequency 

dT 271 K 
““=xT-p 

The gap spacing is expressible in terms of the Rayleigh 

number: 

Experience gained during the course of the exper- 

iment, together with the preceding considerations, 
indicates that the best way to improve system per- 
formance is to abandon the heating wires and the 

attendant necessity for a thick homogenizing plate. 
Instead, the oscillating component of the boundary 

temperature could possibly be induced by a motor 
driven mixer valve which appropriately combines a 
hot and a cold water supply. 

which leads to 3.2. Temperature measurements and their interpretation 

EW= 2,c R, ” 

! j 

‘!‘AT-5!3. 

dt gcL K”’ 

If one wishes to optimize the performance of the system 
by maximizing the product EO, three avenues of ap- 
proach are available. First, a working fluid should be 
chosen whose properties are such that the group 

The results will be presented in two parts. The first 

part consists of a series of examples of typical traces, 

with accompanying commentary setting forth possible 
interpretations of the observed distortions in the tem- 
perature profile. In support of these conclusions, results 
of the theoretical investigation with similar boundary 
conditions and probe initial conditions are presented 

in Section 4. 
__- 
&z 

is as large as possible. An additional constraint as to 
the choice of fluid is imposed. Theoretical predictions 
indicate that the effects of modulation are at a maxi- 

mum at Prandtl number in the vicinity of unity, falling 
off rapidly on both sides of the peak. This limits the 
choice of fluids to air at room temperature and water 
in the vicinity of its boiling point. The product of 

properties 

The second part of the presentation consists of 
various correlations of the data, giving observed trends 

with (u, c, and &. Points of agreement and disagree- 
ment with previous and present analytical investi- 

gations are included. These correlations are given in 

Section 5. 

p ’ 
05 

c 0 
Q -05 

\’ 
--i-;i 
(XK ’ 

is more than twice as large for air than for hot water. 
It is also possible to show that the gap spacing d needs 
to be very much smaller for water, and the attendant 
difficulties of dealing with high temperature water need 
no elaboration. The only reasonable fluid for this 
investigation thus becomes air. 

FIG. 9. Temperature trace, with I = 0.5, R,,,, = - 1400, 
R = 2040, c max = 5.3. i0 = 1.23. 

Assuming dT/d7 is optimized by clever design of the 
heating wires, cooling channels, and so forth, one sees 
that the performance of the system is inversely pro- 
portional to AT5j3, at a given operating Rayleigh 
number R,,,. In the design of this experiment, it was 
decided that the minimum practical AT for normal 
operation at R, = 1708 would be AT z 1°C; below 
this value. uncontrollable fluctuations of the boundary 
conditions become too large relative to the imposed 

Figure 9 is a record of the temperature observed 
by the 0.014-india probe mounted thermistor bead as 
it travels horizontally through the fluid layer at a 
vertical position z = 0.5 and linear traversing speed of 
0.207 in/min. The boundary conditions in this example 
are low enough that no observable motions are induced 
in the fluid anywhere during the cycle. The variation 
in peak temperature amounts to 0.145”C and is due 
to an imposed change in the mean temperature dif- 
ference. The amplitude and phase lag are 0.96 and 4”, 
respectively, compared to the theoretical values of 1.0 
and 7.1”. This figure is a typical experimental obser- 
vation of the basic state. 
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FIG. 10. Temperature trace showing the formation of con- 
vection rolls, no modulation, with z = 0.4. 

Figure 10 displays the onset of convection at E = 0, 

that is, without modulation. One sees the development 
of symmetrical rolls of wavelength 1.87 + 0.05 cm com- 
pared to the theoretical value of 1.92cn-1. (For this case, 
a smaller gap width was used than in the following 
figures.) The Rayleigh number is being gradually in- 
creased with time, so that at A, R = 1620+85, while 
at E, R = 1670f 85. The experiment does not produce 
precision results of critical Rayleigh number in the un- 
modulated case, but does give a good picture of the 
remarkable regularity of the thermal distribution 
within the roll. 

produce observable motion at any time during the cycle 
of oscillation, then this figure is an example of in- 
stability at R = RJ2.6. The whole question of what 
constitutes stability or instability as the terms are 
applied to the experimental evidence is discussed in 
more detail in Section 5. 

Figure 12 shows the flow pattern observed when the 
maximum Rayleigh number is slightly higher than that 
of the preceding figure (R,,x = 3240). The physical 
behavior of the system is typical of that seen during 
much of the experimental investigation in this fre- 
quency range. Observe the points labeled A, B, and C. 
Point A represents a local downdraft of magnitude 
0.16”C which has appeared very near but slightly 
following the peak of the temperature cycle. One can 
imagine the probe travelling horizontally and encoun- 
tering quiescent fluid only until just prior to point A. 

Upon arrival at A, the probe encounters one edge of 
a convection cell which appears as the observed de- 
pression. The probe continues in space observing fairly 
uniform, motionless fluid past points E and D until it 
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FIG. 11. Temperature trace, with z = O-5, R,i, = - 1570, R,,, = 2220, E = 5.75, o = 0.513. 

Figure 11 shows the temperature recorded by the 
moving probe when we have modulation and when the 
mean Rayleigh number is gradually increasing. “Time” 
in this and subsequent figures refers to the time after 
the probe has begun to move. Rmin refers to the 
minimum Rayleigh number measured, whereas R,,, 

refers to the maximum. The trace is typical of that 
observed as the lower wall undergoes modulation at 
high amplitude and low frequency and mean Rayleigh 
number E = 5.5, o = 0.513, R,,,, = 325. Under the 
conditions of this figure, the thermal gradient is ad- 
verse and supercritical from a quasistatic viewpoint 
for 20 per cent of the cycle, adverse and subcritical 
for 30 per cent, and favorable for nearly 50 per cent 
of the time. After about an hour, during which the 
mean Rayleigh number increases from 320 to 650, the 
first small evidence of thermal convection begins to 
appear at the peak of the temperature cycle, when the 
maximum Rayleigh number is 2550. It can be seen 
that this evidence consists of a decrease in the tem- 
perature of the fluid of the order of 6.03”C at point A, 
representing the fact that the probe has encountered 
a slight downdraft of cool fluid from above. Convec- 
tion also probably occurs previously at point B. The 
presence of this small amount of convection illustrates 
a key point in any discussion of the effects of modu- 
lation on the stability of the fluid layer: What criterion 
is to be used to define stability? If one proposes to 
define as unstable those boundary conditions which 
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FIG. 12. Temperature trace, with z = 05, Rmi, = 970, 
R max = 3240, E = 0.595, o = 0.513. 

arrives at B. Point B represents an updraft of roughly 
0.256”C magnitude, or about 25 per cent of modulation 
amplitude. Notice that it occurs significantly prior to 
the peak in the lower wall temperature, so that the 
local instantaneous Rayleigh number is about 2600 
compared to 3200 at A. Nonetheless, the disturbance 
at B can be seen to be larger in amplitude than that 
at A. This effect is commonly seen during the course 
of the investigation: updrafts appear as larger, more 
concentrated thermal plumes while downdrafts are 
more diffuse being lower in magnitude and larger in 
horizontal extent. Qualitative similar patterns, but of 
the opposite sense, have been reported by Spangenberg 
and Rowland [9], in their optical investigation of 
evaporatively cooled water. Convection in their study 
appears in the form of plunging sheets of cooled fluid, 
with warmer updrafts of lower velocity and larger 
volume. Other types of flow patterns observed in un- 
steady heating problems are discussed by Currie [lo]. 
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The wavelength of the convection cell in Fig. 12 may 
be determined from points ,4, B and C. The speed of 
the probe (0.207in/min) combined with the speed of 
the chart (0.5OOin/min) gives the moving probe hori- 

zontal distance scale: one inch on the paper is equi- 
valent to a probe travel of 1,036cm. The physical dis- 

tance between events A and B thus becomes 2.91 cm; 
the wavelength, or distance between A and C is 5.65 cm. 

The predicted wavelength of the critical disturbance 
at R 2 R, for the unmodulated case is 5.00 cm. convection chamber. 

In Fig. 13 the probe speed and initial position are 

and R. E. K~I I Y 

is closer to the local physical downdraft maximum 
than A”, while the latter is nearer the temporal maxi- 
mum. The two effects are additive at D and E. while 
they partially cancel at A. B and C. Thus what at first 
glance appears as a fairly random wavy pattern can 
be seen to contain a surprising amount of detail about 

the behavior of the system. All of the described effects 
have beenduplicated in the numerical integration of the 

nonlinear equations governing the motion within the 

Tlmt , mln 

FIG. 13. Temperature trace, with z = 0.5, R,,,,, = 835, R,,, = 1810. 
i: = 0.54. (11 = 1.72. 
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FIG. 14. Temperature trace, with I = 0.5, R,,,, = 880, R,,, = 2250. 
c? = 055, w = 1.7x. 

adjusted so that a cell boundary is intercepted near the 

peak of every cycle of oscillation. In this and the next 
figure, one inch on the chart represents 2.2 cm of probe 

travel in the convection chamber. The adjustment is 
not precise, as can be seen from the fact that the 
maximum intensity of the convective downdraft moves 
from a position left of the peak at A, to a centered 
position at C, then off to the right of the lower wall 

maximum at E. The updrafts cause an elongation of 
the profile at the maxima in between the lettered 
points. The asymmetry associated with the two local 
maxima A’ and A”, and the opposite asymmetry at D, 
are explained by the relationship between the physical 
location of the probe and the temporal cycle of 
oscillation. The local maximum at A” is higher than 
that at A’ because at A” the probe moves from the cell 
boundary and does not observe the effects of the 
downwash. Thus, the temperature is nearer its higher 
conduction value. The actual location of the cell 
boundary may thus be placed somewhat to the left of 
A, between A and A’. Similar reasoning places another 
cell boundary to the right of the minima at D or E. 
The change in the pattern between C and D is much 
more pronounced than that between B and C, and 
the difference in local maxima surrounding D is greater 
than that in those surrounding A. These phenomena 
are due to the continuous growth in the convection 
strength, so that D” is both close physically to the 
center of the cell boundary and nearer (temporally) to 
the instant of maximum velocity. A’ on the other hand, 

The varying effects produced when the probe passes 

a given location in a convection cell at different times 

in the oscillation cycle are graphically illustrated in 
Fig. 14. Points A and C represent the probe passing 
through the center of an upwelling of warm fluid at the 
cell boundary near the maximum in the lower wall 
temperature. The intervening downdraft would have 
occurred near B, but at this instant in time the con- 
vection has ceased, and the probe measures the con- 
duction temperature only. One sees, however, evidence 
of the downdraft before it ceases prior to B and after 

it reappears just after B. This evidence is in the form 
of a depression from the conduction profile in the 
amount indicated by the dashed lines. 

The next updraft following C should occur at point 

D. Here again the convection has ceased, so that D is 
at the same temperature as B, given by the conduction 

solution. In contrast to the situation at B, no evidence 
ofconvection either prior to or following D is apparent. 
This is another example of the horizontal irregularity 
of the convection observed in the modulated problem: 
the updrafts are localized and intense, while the down- 
drafts are more diffuse. The point C is displaced up- 
ward farther from the conduction point than the sub- 
sequent downdraft is displaced downward. Updrafts 
are “missed” by the probe at D and E, but the down- 
draft is visible inevery intervening instance, i.e. between 
C and D, D and E, and E and F. 

The picture of the convective flow pattern presented 
in Fig. 15 is more complex than that of previous 
figures. The probe has been slowed so that 1 in on the 
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FIG. 15. Temperature trace, with z = @5, R,;, = 820, R,, = 4270, 
E = 068,~ = 1,23. 

chart represents l$l36cm of probe travel. Determi- 
nation of the convection wave number is not too 
precise, but one might visualize areas of downdraft 
centered at A and B, with plumes ascending in the 
vicinity of C and D. Although the exact location of the 
cell boundaries is un~rtain, the wavelength derived 
from the distance A-B is 56cm. Of particular interest 
in this figure are the points labeled E-Z. At each of 
these points, to varying degrees, the slope of the time- 
temperature curve suddenly decreases. Peculiarities of 
these bends in the profile are first, that they occur only 
on the upswing, or increasing part of the cycle, and 
second, that they are associated not with the convective 
wave number, but rather with the time scale of the 
oscillation. The nature of these disturbances was not 
discovered until they unexpectedly began to turn up in 
the numerical solution of the energy equations govern- 
ing the fluid. They are due to the distortion of the 
mean profile which occurs at the onset of convection. 
This distortion ofthe mean, being smaller in magnitude 
than the fundamental convection mode, is only visible 
at a null point in the center of a roll where the velocity 
of the fundamental is zero. One infers that a hysteresis 
is present in the system which results in a gradual 
decrease inconvection as the Rayleigh number becomes 
subcritical on the reverse side of the curve. Thus, no 
sharp bend is present on the downslope side. 

In the preceding figures we have presented some of 
the qualitative behavior observed in the convection 
chamber. Most of the types of patterns discussed have 
also been predicted analyticalIy in the relations to be 
developed in subsequent sections. The main thrust of 
the observational data, namely, the point of onset of 
convection and how it varies with the parameters 
of modulation, is presenfed in Section 5. 

4 STABILITY ANALYSIS 

The behavior of the fluid in the conve~ion chamber 
is governed by the equations of motion, continuity, 
and energy, Chandrasekhar [ 1 l] presents details of the 
derivation of these relations in the Boussinesq approxi- 
mation. Retaining only linear terms, the equations may 
be written in no~d~ensional form: 

16% 1 -.- = 
pr at 

p,Vp+V2v-R@k 

v.v= 0 (4.2) 

KV%. (4.3) 

In the above expressions, To is the basic conduction 
temperature given by (2.14), 8 = T- T,, and the hydro- 
static pressure has been subtracted. Additional scaling 
factors are ~jd for velocity and pmK2/d2 for pressure, 
with pm being the fluid density at a reference tempera- 
ture T,. If one takes the curl twice of equation (4.1), 
utilizing the solenoidal character of the velocity field 
(4.2), and some algebra, the vertical component of the 
linearized equation of motion may be written : 

(~-v-&-~-v2)nl,- -ZRGw (4.4) 

8 has been ehminated from (4.4) by using (4.3), and the 
Prandtl and Rayleigh numbers are 

prd 
K’ 

R _ !Jaw4 --. 
K1' 

The procedure for developing (4.4) is the same as in 
the unm~ulat~ problem and is covered in [ 1 l]. We 
now Fourier analyze the vertical component of the 
disturbance velocity in the horizontal plane: 

w = G(z, t)exp(i(a,x+-a,!))). (4.5) 

If G(z, t) is furthe~ore expanded in a Fourier series 
in z with time dependent coefficients, 

I;i(z, t) = 1 x,(t)sinmnz (4.6) 
WI=1 

it is possible to satisfy the free-free boundary conditions 
on w: 

w2?=_=() at 
d4W 

dT2 az4 
z=O,l. (4.7) 1 

If we substitute (4.6) into (4.4), multiply through by 
sin nrrz, and integrate with respect to z over the interval 
(0, l), the equation for the time dependent coefficient 
x, is 

cc,-------- 

where 

yi = 29mnw 

y2 = n4(n-m)Z(n+m)2-o 
y3 = on2(2n= + 2mq. 

(4.9) 
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Equation (4.9) describes the behavior of small vel- 
ocity disturbances as a function of time. For later com- 

parison to the experimental results, we wish to deter- 
mine the temperature field as well. The vertical com- 
ponent of the linearized equation of motion gives the 

desired connection : 

i’ v2w = gct(vI 0) + vv4w. 
r:r 

The observed convection mode was two dimensional 

rolls induced by the heating wires as discussed in 

Section 3. 
If we take the horizontal dependence of 0 as 

0 = B(z, t) cos U.Y (4.11) 

then, by substituting into (4.10) and using the previous 
Fourier expansion for w(z, t), we obtain 

$= y m$, (m27c2 + uZ)(sinm7rz) 

! 

1 ax, 
x (m%LZ+aZ)x, fPr F (4.12) 

We wish to simulate the temperature measured by a 
probe moving perpendicular to the longitudinal axis 
of the two dimensional roll. It is also convenient to 

be able to adjust the probe velocity independently of 
frequency and still be able to pinpoint its location 
within a convection cell at a known time when the 
lower wall temperature is, for example, at its temporal 

maximum. The free parameter is the initial position of 
the probe x0 which may be set at time to = 0. 

For definiteness, we see that the lower surface tem- 
perature is at a maximum at t = 2rck/cu, k any integer, 
while the horizontal maximum in temperature occurs 
at a cell boundary at x = 2rrkJa. A probe beginning at 
x0 and moving at a velocity V will arrive at the cell 
boundary after a time 

2nk 
X0 

a 
t=-. 

I’ 
(4.13) 

To arrange for the probe to perceive the maximum con- 
vective temperature at a time t = 2nk/co, we see that 

1 v 
xo=2nk --- 

i > a w 
(4.14) 

The desired intersection in time and space will occur 
after one complete cycle of oscillation when k = 1. Thus 

in equation (4.12) we let 

x=271 ‘-K +I?. 
( 1 

(4.15) 
(1 w 

It is desirable to fix the probe’s initial location in this 
manner so that temporal and spatial effects on the 
probe’s temperature may be separated. A similar result 
could have been accomplished if x0 = 0, but then the 
interesting conjunction of thermal maxima occurs at 
t = 0, when the initial conditions dominate the solution. 

Equation (4.8) is similar to that investigated in [s] 
and [6]. However, rather than using a stability 
criterion, the procedure here is to integrate numerically 

the second order system governing the time dependent 
Fourier coefficients I,. The velocity and temperature 
fields may then be reconstructed as a function of time 

to enable direct comparison between the analytical 
predictions and experimental results. 

The problem was solved on the UCLA IBM 360190 
System, using Hammings predictor corrector method. 
It was discovered that at (11 = 3 or less, the fourth term 
in the series was always more than two orders of 

magnitude smaller than the first, so the series was 
truncated at three. In no case ((0 < 20) were more than 

six terms required. 
During the course of the numerical investigations, 

various initial conditions were used. At low frequency, 
(11 = 1, the choice of initial conditions was found not 

to significantly influence the results, as the amplitudes 
x, tended to change rapidly in a time small compared 
to one period whatever conditions were chosen. The 
procedure finally used was to initiate the run with white 
noise of amplitude lo- 3 at a time during the oscillation 

cycle when the Rayleigh number is just passing critical 
in the linear, unmodulated sense (R, = 27x4/4). 

The low frequency numerical results agree with those 
in [5] in the sense that for a given set of boundary 
conditions, the percentage change in critical Rayleigh 
number will follow curves similar to those on Figs. 1-3, 
provided the periodicity or amplitude criterion is 
applied. It should be mentioned that [6] uses fixed 

boundary conditions, while [4] and [S] use free bound- 
ary conditions, but the results are quite close if plotted 
according to the percentage change in the appropriate 

critical Rayleigh number. Therefore, the free-free 
boundary conditions are assumed throughout this 
analysis. 

Despite these points of agreement between this and 
previous analyses, the system (4.8) fails to duplicate the 

experimental results described in Section 3. For 
example, at (o = 1, i: = 1, R, 2 1,2R,, the amplitudes 

x,, grow to a magnitude of 10’ during the part of the 
cycle when the instantaneous Rayleigh number is super- 

critical, then decay when R < R, to their initial value. 
Although one is technically correct in describing such 
behavior as marginally stable according to the period- 
icity condition, the linear assumptions are clearly 
invalid. Further, it does not seem reasonable to describe 
a state where large amplitude convection occurs as 
being marginally stable. 

Using linear theory, one cannot duplicate the tem- 
perature traces recorded by the moving probe in the 
experimental program. The heart of the discrepancy is 
the unbounded exponential growth which results from 
the linear approximation. This growth is manifested in 
two ways, illustrated in Figs. 16 and 17. In Fig. 16 the 
disturbance has grown so large that a temperature 
larger than that at either boundary results. If a lower 
mean Rayleigh number is chosen, a more subtle dis- 
crepancy arises. While a physically plausible profile 
appears in Fig. 17, a comparison with Fig. 11, taken 
under similar boundary conditions, gives a clue to the 
problem. In the experimental trace, the disturbance 
grows rapidly to some finite amplitude, then remains 
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FIG. 16. Computed temperature trace at z = 05, 
R,i, = 0, Rx,,, = 1440, E = 1, w = 3. 
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FIG. 17. Computed temperature trace at z = @5, Rmin = 0, 
R mm = 1054,e= I,w= 1. 

at that general size until it rapidly disappears. This 
results in a uniform depression at the peak of the cycle. 
On the other hand, the linear theory gives a quali- 
tatively different behavior wherein convection persists 
at a Rayieigh number when the experiment shows 
motion has ceased. The type of skewed profile seen in 
Fig. 17 is not observed in the experimental data. 

To provide an analytical description of the observed 
ex~~~ental flows, the energy relations are derived 
from the equations of motion. If we define 

T= TtB,, 

ali/ ati ti=y, 
W=ax’ 

v=o 
CZ 

where 7; is the mean or horizontally averaged tem- 
perature, e1 is the departure from the mean so that 
6r = 0, and II/ is the nondimensional stream function. 
The momentum equation in the Boussinesq approxi- 
mation may be written 

= V4$ - R ril. (4.16) 

The mean temperature equation, which is derived by 
horizontally averaging the energy conservation equa- 
tion, is 

$_g *rg =!& 
- (-1 

(4.17) 

The remaining terms in the heat-conduction equation 
govern e 1 

de, ati, ddt atlf ae, 

t+dxal-i'ixa Z 

Separating the mean temperature T 

T= To+&, (4.19) 

where a2 represents the contribution of convection and 
To is given by (2.14), we have for g2 

(4-20) 

We now multiply equation (4.14) by $. (4.18) by Or, 
and (4.20) by 8, and integrate over the volume of the 
field, assuming the motion is in the form of two 
dimensional rolls of period 2n/a. It may be shown that 
the resultant relations are 

The limits of integration are 0 to 1 on z and 0 to 2n/a 
on x. To these points the energy relations are exact. 
Following Stuart [12], we use the shape assumption, 
presuming that the fundamental convection mode has 
the same shape as that predicted by linear theory. It is 
further assumed that the harmonics are sufficiently 
smaller than the fundamental that they may be ignored. 
This latter assumption restricts the validity of the 
approach to low frequency of modulation. We let 

II/ = kA(t)cosaxsinnr 

0, = B(t)sinaxsinnz 
8, = C(t) sin 2nz 

(4.24) 

so that we have free-free rolls and heat conduction only 
at the boundaries. A differential equation for C is 
derived by substituting (4.24) into (4.23), giving 

dC 71 
;i;+2 AB = -47%. (4.25) 

Using (4.21), we can derive the following expression 
for A: 

dA 
- -Pr 

i 

RBa’ 

dt- 
(a*+x’)A----- 

(a’ + 7~‘) 
(4.26) 

Finally, to solve for B we use (4.22). We also use the 
low frequency approximation for the stationary ther- 
mal gradient : 

2 = -(l+&coswt) (4.27 

so that 
- 

;= -(I+ E cos ot) + 2nG cos 2rrz. (4.28) 
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This leads to the relation governing B: 
dB 

-z= 
-B~rr’+n2)4A(l-t-ccostrtr)+nAl‘. (4.2% 

Equations (4.25) (4.26), and (4.29) are now integrated 
numerically to solve for the time dependent convection 
within the fluid layer. 

If one sets R = 0, d/dt = 0, it is possible to solve for 
the steady state amplitude ofthe unmodulated problem. 
One finds 

u’= _?!L 
LX 

-R, ‘a 
- 1 R, _ sinussinx; (4.30) 

in agreement with the second order results of Malkus 
and Veronis [13] and Segel [i4]. With c = 0, d/dt # 0, 
the numerical integration gives the temperature sensed 
by the moving probe during the onset of convection. 
Results of this integration are presented in Fig. 18, 
which is seen to be in qualitative agreement with the 
experimental trace in Fig. 10. 

The numerical investigation of the energy equations 
is conducted in,a manner analogous to the experimental 
program described in Section 3. A series of cases are 
examined, over the experimental range of variables. 
0 -c E -c LO -c co < I. A parametric presentation of the 
results is given in Section 5, and some typical curves 
are depicted in Figs. 19 and 20. Figure 19 has exactly 

FIG. 18. Computed onset ofconvectiorl with no modulation, 
R = 750, z = 0.5. 
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FIG. 19. Computed temperature trace at I = 05, R,;, = 0, 
R mar = 1054, i: = 1. (‘J = 1. 
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Fro. 20. Computed temperature trace, with R,,,$, = 0. 
R m*x = 1450, i: = 1, 0 = 0.5. 

the same boundary conditions as Fig. 17 and should 
be compared to the experimental curve in Fig. 11. One 
sees that the onset of observable convection is yuali- 
tatively correct in Fig. 19. fn Fig. 20, many of the 
qualitative features of the experimental evidence in 
Section 3 are duplicated. One sees distortion of the 
mean at points A and B, and typical updraft and 
downdraft patterns at C and D. The probe velocity in 
this figure has been adjusted so that cell boundaries 
are encountered at the peak of the lower wall tem- 
perature at C and D. The origin of the asymmetry at D 
and other salient features of this curve are discussed 
in Section 3. 

A significant departure from the peri~icity type 
behavior is observed in the solution of the energy 
relations. At low frequency (0~ = 1) the convection 
amplitude does not grow over several cycles of oscil- 
lation when the mean Rayleigh number is supercritical 
from the linear, periodicity point of view. Instead, the 
energy relations predict that the amplitude of convec- 
tion is the same at the peak of the first cycle of 
oscillation as on succeeding cycles. This is found to be 
true for 0.2 < (: < 1.0, I.2 R, < R,,.,,, < 5 &, where 
R, = 657. This conclusion is fully supported by the 
experimental data. where the convection time constant 
always appears to be smaller than a cycle of oscillatiotl 
at f0 = 1. 

5. CORRELATIONS AND CONCLL'SIONS 

In this section we present a parametric summary of 
the experimental and analytical data compiled during 
the project. The experimental data is given in two 
ranges of modulation amplitude, rather than a? discrete 
values of E. Since c is defined in terms of the imposed 
mean temperature gradient, it is not possible to vary c 
independently. In the first range, 0.3 < c < 0.5, while 
in the second, 0.85 < E < 1. The experimental results 
are plotted with respect to R, = 1708, while for the 
numerical curves R, = 658. In Fig. 21, instances of 
observable convection, defined as a 5 per cent distortion 
ofthe basic profile are indicated by 0, while 0 indicates 
no motion or distortion of the conduction profile. The 
curve labeled I is the amplitude criterion from [S] for 
c = 03, while curve II is from the same source but for 
e = 0.5. The curve labeled III is derived from the 
analysis of Section 4 and represents the boundary of 
observable motion at I: = 0.5. 

FIG. 21. Onset of observable motion. 0 indicates motion 
observed: 0 indicates conduction only. 0.3 < z: < 0.5. 
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The quasi-steady criterion (2.4) gives values for 
(R/R,- 1) as -0.23 and -033 for E = 0.3 and E = 05, 
respectively. 

Figure 21 shows positive evidence of stabilization at 
o = 3-5. The states indicated by these high frequency 
~x~rimental points are stable by any of the criteria 
discussed. Stated simply, no convection occurs even 
though the mean Rayleigh number is nearly 10 per cent 
higher than that required to produce well defined con- 
vection rolls in the unmodulated case. 
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FIG. 22. Onset of observable motion. * indicates motion 
observed; 0 indicates conduction only. 0.8 < E i 1.0. 

Figure 22 is similar to Fig. 21 except that 085 < 
E < 1. For this case, the quasi-steady criterion (2.7) gives 
values of(R,& - I) of - 044 and - 0.50 for E = 0% and 
1.0, respectively. The dashed curve is derived from the 
numerical integration of the energy relations in Section 
4. There is very little variation with w in the experi- 
mental data as compared to Fig. 21. Since the data at 
a given frequency were all taken together, this effect 
would not appear to be ascribable to error in technique 
or me~urement. The theoretica curve, on the other 
hand, shows strong frequency dependence. An ex- 
planation for this evident conflict is not readily 
apparent. Unfortunately, it was impossible to obtain 
large amplitude data at CLI h 3, as discussed in Section 3, 
and to see whether stabilization might occur for higher 
frequency. In this context, it should be mentioned that 
Yih and ti [IS], investigating a problem for which 
upper and lower surface temperatures are modulated 
180” out of phase, have found that, although stabil- 
ization occurs for low values of E, destabilization can 
occur for larger values of E. 

In Figs. 23 and 24, an attempt has been made to 
correlate the experimental data to the peri~icity 
criteria in [5] and [6]. In these figures, 0 represents 
a flow in which evidence of convection appears over the 
entire cycle of oscillation, while 0 indicates conduc- 
tion only exists at some point in the cycle. One presumes 
that if a state is unstable in a periodicity sense, con- 
vection will eventually spread to the entire cycle. It 
should be mentioned that the determination ofstability 
in this sense involves considerable subjective judgment, 
as it is often difficult to separate convection from con- 
duction at high Rayleigh number, particularly at low 
frequency. 

FIG. 23. * indicates convection occurs over entire cycle of 
oscillation; 0 indicates convection has ceased at some point 

in the cycle. O-3 < 6 < C-5. 
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FIG. 24. 0 indicates convection occurs over entire cycle of 
oscilfation; Q indicates convection has ceased at some point 

in the cycle, O-8 -C E i 1.0. 

InFig. 23, the curve I is the periodicity criterion from 
[5], E = 0.5; II is [S], E = @3, and III is [6], E = 0.4. 
It should be recalled that curve III is the fixed wall 
case (as is the data), while I and II have the free-free 
boundary condition. The difference between free and 
fixed boundaries, on a percentage basis, is seen to be 
smaller than the experimental scatter. 

In comparing Figs. 21 and 23, it can be seen that 
the ~ri~icity and ~plitude criteria merge at about 
o = 3, for @3 < E < 5. This is in agreement with the 
results of Rosenblat and Herbert [5] ; see also Fig. 3. 
Under the conditions w = 3.5, 0.3 < E < 0.5, a given 
flow is either all conduction or all convection. At high 
frequency, low amplitude, convection sets in nearly 
simuIt~eously over the whole cycle. 

In Fig. 24, I is from [5], E = I; II is from [6], E = 1. 
Again, the scarcity of data at high frequency does not 
allow evaluation of frequency effects. 

Figure 25 shows the maximum amplitude of con- 
vection temperature difference measured as a function 
of LJ,- R, at a frequency o = 1. It can be seen that 
this amplitude correctly follows the theoretical quasi- 
steady (R - &)“’ dependence. On the other hand, the 
higher frequency data in Fig. 26, w = 2.72 and w = 1.8, 
shows considerable scatter and is closer to a linear 
dependence on R - R,. At high frequency one should 
not expect the quasi-static approximation to be valid. 
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FIG. 25. Convection amplitude as a func- 
tion of R - R,. with (u = I. 
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FIG. 26. Convection amplitude as a func- 
tion of R- 4, at higher frequencies. 

5.1. Concluding remarks 
Although the frequency range studied was rather 

severely restricted, the experimental and theoretical 
data are seen to support the previous analytical work, 

particularly the amplitude condition results of Rosen- 
blat and Herbert [5]. Although apparently of interest 
in determining the onset of continuous convection, the 
periodicity condition does not describe the onset of 

observable motion in the fluid at low frequency. At 

(1) = 3, the two conditions merge, with the periodicity 

condition then properly defining the stability limit at 

(1) > 3. 
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NAISSANCE D’INSTABILITES DANS UNE COUCHE FLUIDE CHAUFFEE 
SINUSO.iDALEMENT PAR LE DESSOUS 

R&sum&-Le probltme Ctudit: concerne I’effet de la modulation thermique sur la stabilitk d’une couche 
fluide chauffke par le dessous. Une expkrience a (it& r&ah&e dans laquelle une couche d’air est soumise 
h un chauffage sinusoi’dal autour d’une valeur moyenne non nulle. Une analyse numCrique des Cquations 
de stabilitC liniaire a montrk que l’hypothiise de linta&& n’est pas valable aux faibles frequences de 
modulation &dikes expkrimentalement. Une analyse non-lintaire utilisant l’hypothtise de forme et des 
conditions aux limites libres a Ct& d&eloppCe et trait&e numCriquement. On a trouvk, g la fois analytique- 
ment et expt?rimentalement, qu’aux faibles frkquences la modulation est destabilisante, tandis qu’aux 

frt-quences plus Clevkes une certaine stabilisation apparait. 
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INSTABILITATSBEGINN IN EINER SINUSFdRMIG VON UNTEN 
BEHEIZTEN FLUSSIGKEITSSCHICHT 
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Zusammenfassung-Es wird der EinfluB therm&her Modulation auf die Stabilitat einer von unten 
beheizten Fliissigkeitsschicht untersucht. In einem Experiment wurde eine Luftschicht einer 
sinusformigen Beheizung urn einen Mittelwert unterworfen. Eine numerische Analyse der linearen 
Stabilitltsgleichung zeigte, daBdie Linear-Annahme ungiiltig ist fur die kleinen experimentell untersuchten 
Modulationsfrequenzen. Eine nichtlineare Analyse mit Annahmen iiber die Form und freie Begrenzung 
wurde entwickelt und numerische iiberpriift. Es ergab sich sowohl experimentell wie such analytisch, 

da8 fur geringe Frequenzen die Modulation destabilisierend wirkt, wahrend fur hohere Frequenzen ein 
Stabilisierungseffekt auftritt. 

B03HMKHOBEHME HEYCTOtiYMBOCTM B CJIOE XMAKOCTM, 
HAFPEBAEMOI? CMHYCOMAAJIbHO CHM3Y 

AWHOTalrWW - MCCneAyeTCR S@eKT TellnOBblX Kone6aHWR Ha yCTOfi'iWBOCTb CnOII X(WAKOCTW, 

HarpeBaeMOti CHWSy. 3KCnepWMeH-r rIpOBOAWnCW B BO3AymHOM CnOe,nOABep~eHHOM CWHyCOWAanb- 

HOMy Harpesy B npeaenax cpeAWer0 HeHyneBoro 3HaYeHWR. YWCneHHblfi aWanW3 JlRHei%HblX ypaa- 

HeHWiz ~cT~AYWB~CTW noKa3an,qTO nonyureHWe nWHefiHOCTW mnfleTcx HenpWeMnWMblM npe HWJKWX 

YaCTOTaX Kone6aHWii, W3y'IeHHblX SKCnepWMeHTanbHO. Pa3pa6oTaW W peaJlW3OBaH 'IWCneHHO HenW- 

He&b&4 aWanW3 Ann 0npeneneWHoR reoMeTpWrecKoR $opMbl w 3anaWWbixycnoBWsx WacBo6oAHoR 

rpaHWUe.~aK3KC~epWMeHTanbHO,TaKWTeOpeTWYeCKWHaiiA~HO,~TO~pWHW3KWX'IaCTOTaXKone6aHWR 

RBnRFOTCR AeCTa6WnW3WpyiOtUWMW, B TO BpeMW KaK npW BblCOKMX 'IaCTOTaX O'ieBWAHa HeKOTOpaR 

yCTOi+iWBOCTb. 


